The Journal of Organic Chemistry
Article
apart for the rearrangements to occur. Rajale, T.; Sharma, S.; Stroud,
D. A.; Unruh, D.; Birney, D. Tetrahedron Lett. 2014, 55, 6627−6630.
(35) Eley, K. L.; Crowley, P. J.; Bugg, T. D. H. J. Org. Chem. 2001,
66, 2091−2097.
(36) Metlesics, W.; Wessely, F. Monatsh. Chem. 1957, 88, 108−117.
(37) Adler, E.; Holmberg, K. Acta Chem. Scand. 1974, 28B, 465−472.
(38) Adler, E.; Holmberg, K. Acta Chem. Scand. 1971, 25, 2775−
2776.
REFERENCES
■
(1) Woodward, R. B.; Hoffmann, R. Angew. Chem. 1969, 81, 797−
869; Angew. Chem., Int. Ed. Engl. 1969, 8, 781−853.
(2) Ross, J. A.; Seiders, R. P.; Lemal, D. M. J. Am. Chem. Soc. 1976,
98, 4325−4327.
(3) Calculations suggest that Dewar thiophene rearrangement
studied by Lemal2 may not be a pseudopericyclic reaction, but his
insights were seminal nevertheless. Rodríguez-Otero, J.; Cabaleiro-
(39) Dickson, R. S.; Dobney, B. J.; Eastwood, F. W. J. Chem. Educ.
1987, 64, 898−898.
Lago, E. M.; Pena-Gallego, A. Tetrahedron 2007, 63, 2191−2198.
̃
(4) Prior to Lemal’s publication, Leroy et al. had recognized the
participation of a lone pair in an electrocyclization was mechanistically
different from a reaction lacking the lone pair but did not generalize
this observation to other reactions. Burke, L. A.; Elguero, J.; Leroy, G.;
Sana, M. J. Am. Chem. Soc. 1976, 98, 1685−1690.
(5) Birney, D. M.; Wagenseller, P. E. J. Am. Chem. Soc. 1994, 116,
6262−6270.
(40) Clizbe, L. A.; Overman, L. E. Organic Syntheses; Wiley: New
York, 1978; Vol. 58, pp 4−11 Clizbe, L. A.; Overman, L. E. Organic
Syntheses; Wiley: New York, 1988; Collect. Vol. 6, pp 507−511.
(41) Anderson, C. E.; Overman, L. E.; Watson, M. P. Organic
Syntheses; Wiley: New York, 2005; Vol. 82, pp 134−139. Anderson, C.
E.; Overman, L. E.; Watson, M. P. Organic Syntheses; Wiley: New York,
2009; Collect. Vol. 11, pp 720−725.
(6) Birney, D. M.; Xu, X.; Ham, S. Angew. Chem., Int. Ed. 1999, 38,
189−193.
(7) Quideau, S.; Looney, M. A.; Pouyseg
Tetrahedron Lett. 1999, 40, 615−618.
(8) Ji, H.; Li, L.; Xu, X.; Ham, S.; Hammad, L. A.; Birney, D. M. J.
Am. Chem. Soc. 2009, 131, 528−537.
(42) Anderson, G. Acta Chem. Scand. 1976, 30B, 64−70.
(43) Quideau, S.; Pouysegu, L.; Deffieux, D.; Ozanne, A.; Gagnepain,
́
J.; Fabre, I.; Oxoby, M. ARKIVOC 2003, 2003, 106−119.
(44) This reaction has proved to be difficult to reproduce; a major
side product in several reactions was identified as 24 by X-ray
crystallography.
́
u, L.; Ham, S.; Birney, D.
(9) Birney, D. M. Curr. Org. Chem. 2010, 14 (15), 1658−1668.
(10) Sharma, S.; Rajale, T.; Cordes, D. B.; Hung-Low, F.; Birney, D.
M. J. Am. Chem. Soc. 2013, 135, 14438−14447.
(45) The increase in selectivity at lower temperatures is typical for
competing unimolecular reactions but is in contrast to the trends
observed in the pyrolysis of 1, where a more complicated mechanism
involving equilibration and intramolecular tautomerization of 2 was
suggested to lead to increasing selectivity at higher temperatures.10
(46) Gaussian 09, Revision D.01: Frisch, M. J.; Trucks, G. W.;
Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.;
Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji,
H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.;
Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.;
Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao,
O.; Nakai, H.; Vreven, T.; Montgomery, J. A., Jr.; Peralta, J. E.;
Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.;
Staroverov, V. N.; Keith, T.; Kobayashi, R.; Normand, J.; Raghavachari,
K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.;
Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.;
Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.;
Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.;
Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.;
Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, O.;
Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian, Inc.,
Wallingford, CT, 2013.
(11) Finnerty, J. J.; Wentrup, C. J. Org. Chem. 2005, 70, 9735−9739.
(12) Krenske, E. H.; He, S.; Huang, J.; Du, Y.; Houk, K. N.; Hsung,
R. P. J. Am. Chem. Soc. 2013, 135, 5242−5245.
́
(13) Alajarín, M.; Vidal, A.; Sanchez-Andrada, P.; Tovar, F.; Ochoa,
G. Org. Lett. 2000, 2, 965−968.
(14) Fabian, W. M. F.; Kappe, C. O.; Bakulev, V. A. J. Org. Chem.
2000, 65, 47−53.
(15) Herges, R.; Geuenich, D. J. Phys. Chem. A 2001, 105, 3214−
3220.
(16) Matito, E.; Poater, J.; Duran, M.; Sola,
7, 111−113.
̀
M. ChemPhysChem 2006,
(17) Fukushima, K.; Iwahashi, H. Chem. Lett. 2006, 35, 1242−1243.
(18) Cabaleiro-Lago, E. M.; Rodriguez-Otero, J.; Varela-Varela, S. M.;
Pena-Gallego, A.; Hermida-Ramon, J. M. J. Org. Chem. 2005, 70,
3921−3928.
(19) Chamorro, E. E.; Notario, R. J. Phys. Chem. A 2004, 108, 4099−
4104.
(20) Lopez, C. S.; Faza, A. N.; Cossio, F. P.; York, D. M.; de Lera, A.
R. Chem. - Eur. J. 2005, 11, 1734−1738.
(21) Sakai, S. Theor. Chem. Acc. 2008, 120, 177−183.
(47) Becke, A. D. J. Chem. Phys. 1993, 98, 5648−5652.
(48) Hariharan, P. C.; Pople, J. A. Theor. Chim. Acta 1973, 28, 213−
222.
́
(22) Calvo-Losada, S.; Quirante Sanchez, J. J. J. Phys. Chem. A 2008,
112, 8164−8178.
(23) Burke, L. A.; Butler, R. N. J. Org. Chem. 2009, 74, 5199−5210.
(24) Forte, L.; Lafortune, M. C.; Bierzynski, I. R.; Duncan, J. A. J. Am.
Chem. Soc. 2010, 132, 2196−2201.
(49) Tomasi, J.; Mennucci, B.; Cammi, R. Chem. Rev. 2005, 105,
2999−3093.
(50) Hirao, K.-I.; Unno, S.; Miura, H.; Yonemitsu, O. Chem. Pharm.
Bull. 1977, 25, 3354−3359.
(25) Zhang, Q.; Wu, C.; Zhou, L.; Li, J. Organometallics 2013, 32,
415−426.
(51) Abell, J. P.; Yamamoto, H. J. Am. Chem. Soc. 2009, 131, 15118−
̈
(26) Celebit-Olcu̧ m, N.; Aviyente, V.; Houk, K. N. J. Org. Chem.
̈
15119.
2009, 74, 6944−6952.
(52) Sukornick, B.Organic Syntheses; Wiley: New York, 1960; Vol. 40,
pp 103−104. Sukornick, B.Organic Syntheses; Wiley: New York, 1973;
Collect. Vol. 5, pp 1074−1076
(53) Cross, G. G.; Fischer, A.; Henderson; George, N.; Smyth;
Trevor, A. Can. J. Chem. 1984, 62, 1446−1451.
(54) Koini, E. N.; Papazafiri, P.; Vassilopoulos, A.; Koufaki, M.;
(27) Bachrach, S. M. Computational Organic Chemistry; John Wiley &
Sons, Inc.: Hoboken, 2007.
(28) Schleyer, P. V. R.; Wu, J. I.; Cossío, F. P.; Fernan
Soc. Rev. 2014, 43, 4909−4921.
(29) Zbiral, E.; Wessely, F.; Jorg, J. Monatsh. Chem. 1961, 92, 654−
666.
(30) Overman, L. E. J. Am. Chem. Soc. 1974, 96, 597−599.
(31) Overman, L. E.; Carpenter, N. E. Org. React. 2005, 66, 1−107.
(32) Chen, Y. K.; Lurain, A. E.; Walsh, P. J. J. Am. Chem. Soc. 2002,
124, 12225−12231.
(33) Nishikawa, T.; Asai, M.; Ohyabu, N.; Isobe, M. J. Org. Chem.
1998, 63, 188−192.
(34) We have synthesized a trichloroacetimidate of a dienyl alcohol
built on a coumarin scaffold, but the calculated (DFT) and observed
(X-ray crystal structure) distances for the reacting centers were too far
́
dez, I. Chem.
́ ́ ́
Horvath, Z.; Koncz, I.; Virag, L.; Papp, G. J.; Varro, A.;
Calogeropoulou, T. J. Med. Chem. 2009, 52, 2328−2340.
(55) Bolton, P. D. U.S. Patent Application, US 20060032000 A1
20060216, 2006.
(56) Annoura, H.; Nakanishi, K.; Toba, T.; Takemoto, N.; Imajo, S.;
Miyajima, A.; Tamura-Horikawa, Y.; Tamura, S. J. Med. Chem. 2000,
43, 3372−3376.
(57) Petrini, M.; Ballini, R.; Rosini, G. Synthesis 1987, 1987, 713−
714.
J
J. Org. Chem. XXXX, XXX, XXX−XXX