Y. Zhang, C.-J. Li
SHORT COMMUNICATION
Scheme 2. Alkylation of ethyl benzoylacetate with adamantane.
Scheme 3. Alkylation of ethyl benzoylacetate by n-hexane.
The RO· radical species could then react with cyclohexane vestigations including the mechanism, the scope, and syn-
to give a cyclohexyl radical, whereas RO–Fe(III) could react thetic applications of this reaction are in progress.
with the β-keto ester to generate an Fe enolate. The cyclo-
Supporting Information (see footnote on the first page of this arti-
hexyl radical is able to react with the enolate to form the
cle): Experimental details and characterization data for all com-
alkylated β-keto ester to regenerate FeII for further reac-
pounds.
tions. Alternatively, the reaction could be considered as a
simple free-radical addition onto a double bond[7] of an
iron benzoylacetate; albeit no product was observed with
Acknowledgments
other metal salts.
We are grateful to the Canada Research Chair (Tier I) foundation
(to C. J. L) and the US Environmental Protection Agency’s Tech-
nology for Sustainable Environment Program for support of our
research.
[1] For recent reviews on the reactions of C–H bonds, see: a) V.
Ritleng, C. Sirlin, M. Pfeffer, Chem. Rev. 2002, 102, 1731–1769;
b) G. Dyker, Angew. Chem. 1999, 111, 1808–1822; Angew.
Chem. Int. Ed. 1999, 38, 1698–1712; c) T. Naota, H. Takaya,
S. I. Murahashi, Chem. Rev. 1998, 98, 2599–2660; d) C. J. Li,
Z. Li, Pure Appl. Chem. 2006, 78, 935–945; for representative
examples, see: e) N. Chatani, T. Asaumi, S. Yorimitsu, T. Ikeda,
F. Kakiuchi, S. Murai, J. Am. Chem. Soc. 2001, 123, 10935–
10941; f) L. J. Goossen, Angew. Chem. 2001, 113, 3929–3932;
Angew. Chem. Int. Ed. 2002, 41, 3775–3778; g) B. A. Arndtsen,
R. G. Bergman, T. A. Mobley, T. H. Peterson, Acc. Chem. Res.
1995, 28, 154–162; h) H. Chen, S. Schlecht, T. C. Semple, J. F.
Hartwig, Science 2000, 287, 1995–1997; i) A. S. Goldman, Na-
ture 1993, 366, 514; j) R. H. Crabtree, J. Organomet. Chem.
2004, 689, 4083–4091; k) C. Jia, T. Kitamura, Y. Fujiwara, Acc.
Chem. Res. 2001, 34, 633–639; l) A. A. Fokin, P. R. Schreiner,
Scheme 4. Tentative mechanism for the Fe-catalyzed alkylation
with simple alkanes.
Chem. Rev. 2002, 102, 1551; m) L. Ackermann, A. Althammer,
R. Born, Angew. Chem. Int. Ed. Engl. 2006, 45, 2619–2622.
[2] a) Y. Zhang, C.-J. Li, J. Am. Chem. Soc. 2006, 128, 4242–4243;
b) Y. Zhang, C. J. Li, Angew. Chem. Int. Ed. 2006, 45, 1949–
1952; c) Z. Li, C.-J. Li, J. Am. Chem. Soc. 2004, 126, 11810–
11811; d) Z. Li, C.-J. Li, Org. Lett. 2004, 6, 4997–4999; e) Z.
Li, C.-J. Li, Eur. J. Org. Chem. 2005, 3173–3176; f) Z. Li, C.-J.
Conclusion
Li, J. Am. Chem. Soc. 2005, 127, 6968–6969; g) Z. Li, C.-J. Li,
J. Am. Chem. Soc. 2005, 127, 3672–3673; h) Z. Li, C.-J. Li, J.
Am. Chem. Soc. 2006, 128, 56–57; i) Z. Li, L. Cao, C.-J. Li,
Angew. Chem. Int. Ed. 2007, in press.
In summary, we developed a novel method for C–C bond
formation by a FeCl2-catalyzed alkane C–H oxidative acti-
vation. This study provides a stepping stone for further re-
search on the efficient functionalization of simple alkanes
for chemical syntheses and energy applications. Further in-
[3] a) D. R. Stuart, K. Fagnou, Science 2007, 316, 1172–1175; b)
S.-I. Murahashi, N. Komiya, H. Terai, T. Nakae, J. Am. Chem.
4656
www.eurjoc.org
© 2007 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Eur. J. Org. Chem. 2007, 4654–4657