this is usually done by chlorination of pyridine N-oxides with
poor 2,4-regioselectivity and/or low yields.6,7 The most direct
approach would start with 2-unsubstituted pyridines. The
Chichibabin reaction1b,c,8 gives 2-aminopyridines directly from
sodium amide and pyridines, but it is very limited in scope with
unsatisfactory yields and poor functional group tolerance due
to the strongly basic conditions and high temperatures.9
A General and Efficient 2-Amination of Pyridines
and Quinolines
Jingjun Yin,* Bangping Xiang,* Mark A. Huffman,
Conrad E. Raab, and Ian W. Davies
Department of Process Research, Merck Research Laboratories,
P.O. Box 2000, Rahway, New Jersey 07065
Pyridine N-oxides 2 are readily available via oxidation of
pyridines under a variety of different conditions.10 Abramovich
first reported use of imidoyl chlorides to convert pyridine
N-oxides to 2-amidopyridines.11 Synthesis of 2-amidopyridines
from secondary amides or 2-amido(iso)quinolines from primary
amides via in situ generation of imidoyl chlorides or benzoyl
isocyanates has also been reported recently.12 For the synthesis
of 2-aminopyridines, 4-chloro-2,2-dimethyl-2H-1,3-benzoxazine
can be used because the resulting amidopyridine product can
be readily converted to 2-aminopyridines.13 However, this
reagent requires a two-step synthesis,13b and the release of the
2-amino group requires a separate step.
jingjun_yin@merck.com; bangping_xiang@merck.com
ReceiVed January 30, 2007
Pyridine N-oxides were converted to 2-aminopyridines in a
one-pot fashion using Ts2O-t-BuNH2 followed by in situ
deprotection with TFA. The amination proceeded in high
yields, excellent 2-/4-selectivity, and with good functional
group compatibility. 2-Amino (iso)quinolines were also
obtained in the same manner. Combined with the simple
oxidation of pyridines to pyridine N-oxides, this method
provides a general and efficient way for amination of
2-unsubstituted pyridines.
On the other hand, after reacting with an electrophile to form
3, the 2-position is highly activated for nucleophile addition. If
ammonia serves as the nucleophile, 2-aminopyridines 4 could
be obtained. Very few examples of direct conversion of (iso)-
quinoline N-oxides to 2-amino(iso)quinolines are known, and
they give 60-70% yields mostly using NH4OH-TsCl.14
(5) (a) Lang, F.; Zewge, D.; Houpis, I. N.; Volante, R. P. Tetrahedron
Lett. 2001, 42, 3251. (b) Vedejs, E.; Trapencieris, P.; Suna, E. J. Org. Chem.
1999, 64, 6724.
(6) Even complete 4-chlorination is known: (a) Alca´zar, J.; Alonso, J.
M.; Bartolome´, J. M.; Iturino, L.; Matesanz, E. Tetrahedron Lett. 2003,
44, 8983. For other examples: (b) Yamanaka, H.; Araki, T.; Sakamoto, T.
Chem. Pharm. Bull. 1988, 36, 2244. (c) Klemm, L. H.; Louris, J. N.;
Boisvert, W.; Higgins, C.; Muchiri, D. R. J. Heterocycl. Chem. 1985, 22,
1249. (d) Miura, Y.; Takaku, S.; Nawata, Y.; Hamana, M. Heterocycles
1991, 32, 1579. (e) Bremner, D. H.; Dunn, A. D.; Wilson, K. A. Synthesis
1992, 6, 528. (f) Ohta, A.; Takahashi, N.; Shirokoma, Y. Heterocycles 1990,
30, 875. (g) Itoh, T.; Ono, K.; Sugawara, T.; Mizuno, Y. J. Heterocycl.
Chem. 1982, 19, 513.
(7) Deprotonation at the 2-position with a strong base followed by
halogenation is known, but with limited scope. For examples: (a) Cuperly,
D.; Gros, P.; Fort, Y. J. Org. Chem. 2002, 67, 238. (b) Mathieu, J.; Gros,
P.; Fort, Y. Chem. Commun. 2000, 951. (c) Imahori, T.; Uchiyama, M.;
Sakamoto, T.; Kondo, Y. Chem. Commun. 2001, 2450.
2-Aminopyridines and analogues constitute an important
class of compounds in organic synthesis and drug discovery.1
During SAR investigations in the drug discovery process,
derivatization of a 2-unsubstituted pyridine moiety in a complex
molecule to the corresponding 2-aminopyridine is often desired
but only achieved with a long sequence and low efficiency.2
One of the most widely used amination methods is substitution
of 2-halopyridines and analogues with ammonia or an equivalent
under high temperature (150-250 °C) and pressure3 or under
Pd4- or Cu5-catalyzed conditions. However, to use this approach,
a halogen atom must be installed at the 2-position first, and
(8) Chichibabin, A. E.; Zeide, O. A. J. Russ. Phys. Chem. Soc. 1914,
46, 1216.
(1) (a) Scriven, E. F. V. In ComprehensiVe Heterocyclic Chemistry, Part
2; Boulton, A. J., McKillop, A., Eds.; Pergamon: New York, 1984; Vol.
2, pp 165-314. (b) Leffler, M. T. Org. React. 1942, 1, 91. (c) McGill, C.
K.; Rappa, A. AdV. Heterocycl. Chem. 1988, 44, 1-79.
(9) Direct amination of nitropyridines with NH3/KMnO4 or via vicarious
nucleophilic substitution has been reported. (a) Wozniak, M.; Baranski, A.;
Szpakiewicz, B. Liebigs Ann. Chem. 1991, 875. (b) Seko, S.; Miyake, K.
Chem. Commun. 1998, 1519. (c) Makosza, M.; Bialecki, M. J. Org. Chem.
1998, 63, 4878. (d) Bakke, J. M.; Svensen, H.; Trevisan, R. J. Chem. Soc.,
Perkin Trans. 1 2001, 376.
(10) For examples: (a) Itoh, T.; Nagano, T.; Hirobe, M. Chem. Pharm.
Bull. 1986, 34, 2013. (b) Jain, S. L.; Sain, B. Chem. Commun. 2002, 1040.
(c) Ferrer, M.; Sanchez-Baeza, F.; Messeguer, A. Tetrahedron 1997, 53,
15877. (d) Fields, J. D.; Kropp, P. J. J. Org. Chem. 2000, 65, 5937.
(11) (a) Abramovich, R. A.; Singer, G. M. J. Am. Chem. Soc. 1969, 91,
5672. (b) Abramovich, R. A.; Singer, G. M. J. Org. Chem. 1974, 39, 1795.
(c) Abramovich, R. A.; Rogers, R. B. J. Org. Chem. 1974, 39, 1802. (d)
Abramovich, R. A.; Pilski, J.; Konitz, A.; Tomasik, P. J. Org. Chem. 1983,
48, 4391. (e) Abramovitch, R. A.; Wang, Y.-X. Heterocycles 1987, 26,
2065.
(2) For examples: (a) Song, Y. H.; Clizbe, L.; Bhakta, C.; Teng, W.;
Li, W.; Wong, P.; Huang, B.; Sinha, U.; Park, G.; Reed, A.; Scarborough,
R. M.; Zhu, B.-Y. Bioorg. Med. Chem. Lett. 2002, 12, 2043. (b) Lam, P.
Y. S.; Clark, C. G.; Li, R.; Pinto, D. J. P.; Orwat, M. J.; Galemmo, R. A.;
Fevig, J. M.; Teleha, C. A.; Alexander, R. S.; Smallwood, A. M.; Rossi,
K. A.; Wright, M. R.; Bai, S. A.; He, K.; Luettgen, J. M.; Wong, P. C.;
Knabb, R. M.; Wexler, R. R. J. Med. Chem. 2003, 46, 4405.
(3) For examples: (a) Taylor, E. C.; Corvetti, A. J. J. Org. Chem. 1954,
19, 1633. (b) Ikemoto, T.; Kawamoto, T.; Wada, H.; Ishida, T.; Ito, T.;
Isogami, Y.; Miyano, Y. o.; Mizuno, Y.; Tomimatsu, K.; Hamamura, K.;
Takatani, M.; Wakimasu, M. Tetrahedron 2002, 58, 489. (c) Gudmundsson,
K. S.; Johns, B. A. Org. Lett. 2003, 5, 1369. (d) Kuramochi, T.; Kakefuda,
A.; Yamada, H.; Tsukamoto, I.; Taguchi, T.; Sakamoto, S. Bioorg. Med.
Chem. 2005, 13, 4022.
(12) (a) Manley, P. J.; Bilodeau, M. T. Org. Lett. 2002, 4, 3127. (b)
Couturier, M.; Caron, L.; Tumidajski, S.; Jones, K.; White, T. D. Org. Lett.
2006, 8, 1929.
(13) For examples: (a) Wachi, K.; Terada, A. Chem. Pharm. Bull. 1980,
28, 465. (b) Ujjainwalla, F.; Walsh, T. F. Tetrahedron Lett. 2001, 42,
6441.
(4) (a) Huang, X.; Buchwald, S. L. Org. Lett. 2001, 3, 3417. (b) Mathes,
B. M.; Filla, S. A. Tetrahedron Lett. 2003, 44, 725. (c) Bolm, C.; Frison,
J.-C.; Paih, J. L.; Moessner, C.; Raabe, G. J. Organomet. Chem. 2004, 689,
3767.
10.1021/jo070189y CCC: $37.00 © 2007 American Chemical Society
Published on Web 05/15/2007
4554
J. Org. Chem. 2007, 72, 4554-4557