8 (a) D. M. Epstein, S. Choudhary, R. M. Churchill, K. M. Keil,
(pPF)3: (S,S )-N-(4-Dimethoxymethyl-benzoyl)proline-phenyl-
alanine carboxylic acid hydrazide trimer. Isolated as described
previously.10d Rf = 0.45 [silica gel, DCM:MeOH 95:5] (UV); IR
A. V. Eliseev and J. R. Morrow, Inorg. Chem., 2001, 40, 1591;
(b) S. Choudhary and J. R. Morrow, Angew. Chem., Int. Ed., 2002,
41, 4096; (c) I. Huc, M. J. Krische, D. P. Funeriu and J.-M. Lehn,
Eur. J. Inorg. Chem., 1999, 1415; (d ) E. Stulz, Y.-F. Ng, S. M. Scott
and J. K. M. Sanders, Chem. Commun., 2002, 524; (e) M. Ziegler,
J. J. Miranda, U. N. Andersen, D. W. Johnson, J. A. Leary
and K. N. Raymond, Angew. Chem., Int. Ed., 2001, 40, 733;
( f ) M. Albrecht, O. Blau and R. Fröhlich, Chem. Eur. J., 1999, 5, 48;
(g) S. Hiraoke and M. Fujita, J. Am. Chem. Soc., 1999, 121, 10239;
(h) Y. Kubota, S. Sakamoto, K. Yamaguchi and M. Fujita, Proc.
Natl. Acad. Sci. USA, 2002, 99, 4854; (i) S. Sakai, Y. Shigemasa
and T. Sasaki, Tetrahedron Lett., 1997, 38, 8145; (j) B. Klekota,
M. H. Hammond and B. L. Miller, Tetrahedron Lett., 1997, 38,
8639; (k) B. Klekota and B. L. Miller, Tetrahedron, 1999, 55, 11687;
(l ) C. Karan and B. L. Miller, J. Am. Chem. Soc., 2001, 123, 7455;
(m) M. A. Case and G. L. McLendon, J. Am. Chem. Soc., 2000, 122,
8089; (n) E. C. Constable, C. E. Housecroft, T. Kulke, C. Lazzarini,
E. R. Schofield and Y. Zimmermann, J. Chem. Soc., Dalton Trans.,
2001, 2864; (o) V. Goral, M. I. Nelen, A. V. Eliseev and J.-M. Lehn,
Proc. Natl. Acad. Sci. USA, 2001, 98, 1347.
1
(CDCl :MeOD 98:2) ν = 1673 (br, C᎐Os) cmϪ1; H NMR (500
᎐
3
MHz (cryoprobe), CDCl3:MeOD 98:2) δ = 10.29 (3H, br,
NHNC), 8.24 (3H, s, HCN), 7.67 (6H, d, J = 8.0 Hz, Ar–H),
7.43–7.14 (21H, m, Ar–H), 4.99 (3H, t, J = 5.6 Hz, α-H), 4.40
(3H, dd, J1 = 10.3 Hz, J2 = 7.0 Hz, Pro–α–H), 3.67 (3H, dd,
J1 = 14.4 Hz, J2 = 7.0 Hz, CHaHbPh), 3.58 (6H, m, Pro–NCH2),
3.11 (3H, dd, J1 = 14.4 Hz, J2 = 10.3 Hz, CHaHbPh), 2.47 (3H,
m, Pro–CHaHb), 2.05 (3H, m, Pro–CHcHd), 1.87 (3H, m, Pro–
CHaHb), 1.78 (3H, m, Pro–CHcHd); 13C NMR (125 MHz (cryo-
probe), CDCl :MeOD 98:2) δ = 171.4, 170.1, 167.2 (C᎐O),
᎐
3
148.3 (CN), 137.1, 135.7, 135.4, 129.4, 129.2, 127.9, 127.5,
127.2 (Ar), 63.2 (Pro–Cα–H), 51.2 (Pro–NCH2), 50.1 (Cα–H),
36.3 (CH2Ph), 29.6, 26.3 (CH2); MS (QUATTRO) [M ϩ Na]ϩ
C66H84N12O9Na requires 1212, found 1212; MSMS (QUAT-
TRO) [trimer ϩ H]ϩ 1172 (C66H67N12O9), [trimer Ϫ phenylalan-
ine unit]ϩ 1025 (C57H58N11O8), [dimer ϩ H]ϩ 781 (C44H45N8O6),
[monomer Ϫ phenylalanine unit]ϩ 243 (C13H14N3O2); m.pt. 262
ЊC (decomposition).
9 (a) A. V. Eliseev and M. I. Nelen, J. Am. Chem. Soc., 1997, 119,
1147; (b) A. V. Eliseev and M. I. Nelen, Chem. Eur. J., 1998, 4, 825.
10 (a) S. Otto, R. L. E. Furlan and J. K. M. Sanders, Science, 2002, 297,
590; (b) R. L. E. Furlan, Y.-F. Ng, G. R. L. Cousins, J. E. Redman
and J. K. M. Sanders, Tetrahedron, 2002, 58, 771; (c) M. Hochgürtel,
H. Kroth, D. Piecha, M. W. Hofmann, C. Nicolau, S. Krause,
O. Schaaf, G. Sonnenmoser and A. V. Eliseev, Proc. Natl. Acad. Sci.
USA, 2002, 99, 3382; (d ) R. L. E. Furlan, Y.-F. Ng, S. Otto and
J. K. M. Sanders, J. Am. Chem. Soc., 2001, 123, 8876; (e) G. R. L.
Cousins, R. L. E. Furlan, Y.-F. Ng, J. E. Redman and J. K. M.
Sanders, Angew. Chem., Int. Ed., 2001, 40, 423; ( f ) H. Hioki and
W. C. Still, J. Org. Chem., 1998, 63, 904.
11 Nomenclature of the dipeptide building blocks: the first m/p denotes
the meta or para position of the protected aldehyde group, the last
character indicates the size of the macrocycle (m for monomer) and
the middle two characters are the one letter codes for the amino
acids, i.e. P for proline, F for phenylalanine, and C for cyclohexyl-
alanine.
12 HPLC grade chloroform (Aldrich), stabilised by 0.1% (by weight)
amylenes was used throughout.
13 Linear oligomers are also present at concentrations which are
generally too low to be detected easily, but they can be amplified by
binding the terminal protonated hydrazinium ion to 18-crown-6.
See: R. L. E. Furlan, G. R. L. Cousins and J. K. M. Sanders, Chem.
Commun., 2000, 1761.
14 In the presence of NaI libraries generated from pPFm pass through
an intermediate stage with relatively large amounts of cyclic dimer,
which is only sparingly soluble. The precipitates formed upon
starting equilibration from the monomer are slow to redissolve,
acting as a kinetic trap, preventing thermodynamic equilibrium from
being reached.
15 The role of the trifluoroacetate anion cannot be assessed, as TFA is
always present in large excess.
16 L. Fielding, Tetrahedron, 2000, 56, 6151.
17 A. J. Goshe, I. M. Steele, C. Ceccarelli, A. L. Rheingold and
B. Bosnich, Proc. Natl. Acad. Sci. USA, 2002, 99, 4823.
18 (a) D. L. Boger, M. A. Patane and J. Zhou, J. Am. Chem. Soc., 1995,
117, 7357; (b) G. Müller, G.-M. Maier and M. Lutz, Inorg. Chim.
Acta, 1994, 218, 121; (c) D. Seebach and H. G. Bossler, Helv. Chim.
Acta, 1994, 77, 291; (d ) D. Seebach, A. K. Beck, H. G. Bossler,
C. Gerber, S. Y. Ko, C. W. Murtiashaw, R. Naef, S. Shoda
and A. Thaler, Helv. Chim. Acta, 1993, 76, 1565; (e) M. Köck,
H. Kessler, D. Seebach and A. Thaler, J. Am. Chem. Soc., 1992, 114,
2676; ( f ) H. Kessler, W. Hehlein and R. Schuck, J. Am. Chem. Soc.,
1982, 104, 4534.
Acknowledgements
We are grateful for support from GlaxoSmithKline and BBSRC
to SLR, from the Fundación Antorchas and the Consejo
Nacional de Investigaciones Científicas y Tecnicas (Argentina)
to RLEF, from the Royal Society (University Research Fellow-
ship) to SO, and from EPSRC to JKMS.
References
1 For reviews, see: (a) S. Otto, R. L. E. Furlan and J. K. M. Sanders,
Curr. Opin. Chem. Biol., 2002, 6, 321; (b) R. L. E. Furlan, S. Otto
and J. K. M. Sanders, Proc. Natl. Acad. Sci. USA, 2002, 99,
4801; (c) S. J. Rowan, S. J. Cantrill, G. R. L. Cousins, J. K. M.
Sanders and J. F. Stoddart, Angew. Chem., Int. Ed., 2002, 41, 898;
(d ) O. Ramström, T. Bunyapaiboonsri, S. Lohmann and J.-M. Lehn,
Biochim. Biophys. Acta, 2002, 1572, 178; (e) J.-M. Lehn and A. V.
Eliseev, Science, 2001, 291, 2331; ( f ) C. Karan and B. L. Miller,
Drug Discov. Today, 2000, 5, 67; (g) A. Ganesan, Angew. Chem., Int.
Ed., 1998, 37, 2828.
2 (a) P. A. Brady, R. P. Bonar-Law, S. J. Rowan, C. J. Suckling and
J. K. M. Sanders, Chem. Commun., 1996, 319; (b) S. J. Rowan,
P. A. Brady and J. K. M. Sanders, Angew. Chem., Int. Ed. Engl.,
1996, 35, 2143; (c) S. J. Rowan, P. A. Brady and J. K. M. Sanders,
Tetrahedron Lett., 1996, 37, 6013; (d ) S. J. Rowan and J. K. M.
Sanders, J. Org. Chem., 1998, 63, 1536; (e) P. A. Brady and J. K. M.
Sanders, J. Chem. Soc., Perkin Trans. 1, 1997, 3237; ( f ) G. Kaiser
and J. K. M. Sanders, Chem. Commun., 2000, 1763.
3 Imine exchange: (a) I. Huc and J.-M. Lehn, Proc. Natl. Acad. Sci.
USA, 1997, 94, 2106; (b) A. Star, I. Goldberg and B. Fuchs, Angew.
Chem., Int. Ed., 2000, 39, 2685; (c) O. Storm and U. Lüning, Chem.
Eur. J., 2002, 8, 793; Oxime exchange (d ) N. Nazarpack-
Kandlousy, J. Zweigenbaum, J. Henion and A. V. Eliseev, J. Comb.
Chem., 1999, 1, 199 . Hydrazone exchange; (e) G. R. L. Cousins,
S.-A. Poulsen and J. K. M. Sanders, Chem. Commun., 1999, 1575;
( f ) V. Berl, I. Huc, J.-M. Lehn, A. DeCian and J. Fischer, Eur.
J. Inorg. Chem., 1999, 3089; (g) T. Bunyapaiboonsri, O. Ramström,
S. Lohmann, J.-M. Lehn, L. Peng and M. Goeldner, ChemBioChem,
2001, 2, 438.
4 T. Giger, M. Wigger, S. Audetat and S. A. Benner, Synlett, 1998, 688.
5 (a) S. Otto, R. L. E. Furlan and J. K. M. Sanders, J. Am. Chem. Soc.,
2000, 122, 12063; (b) O. Ramström and J.-M. Lehn, ChemBioChem,
2000, 1, 41.
6 (a) P. G. Swann, R. A. Casanova, A. Desai, M. M. Frauenhoff,
M. Urbancic, U. Slomczynska, A. J. Hopfinger, G. C. Le Breton and
D. L. Venton, Biopolymers, 1996, 40, 617; (b) R. J. Lins, S. L. Flitsch,
N. J. Turner, E. Irving and S. A. Brown, Angew. Chem., Int. Ed.,
2002, 41, 3405.
7 (a) M. Crego Calama, R. Hulst, R. Fokkens, N. M. M. Nibbering,
P. Timmerman and D. N. Reinhoudt, Chem. Commun., 1998, 1021;
(b) M. Crego Calama, P. Timmerman and D. N. Reinhoudt, Angew.
Chem., Int. Ed., 2000, 39, 755; (c) F. Hof, C. Nuckolls and J. Rebek,
J. Am. Chem. Soc., 2000, 122, 4251.
19 The shifts in the carbonyl stretching frequencies of (pPC)3 measured
here in CHCl3:MeOH (98:2 v/v) are much smaller than those
reported previously (1684 to 1666 cmϪ1
) measured in pure
chloroform (see reference 10d ).
20 M. J. Blandamer, P. M. Cullis and J. B. F. N. Engberts, J. Chem. Soc.,
Faraday Trans., 1998, 94, 2261.
21 J. S. Bradshaw, R. M. Izatt, A. V. Bordunov, C. Y. Zhu and
J. K. Hathaway, in Comprehensive Supramolecular Chemistry, Vol. 1,
eds. J. L. Atwood, J. E. D. Davies, D. D. Macnicol and F. Vögtle,
Elsevier, Oxford, 1996, pp. 65–67 and references therein.
22 B. R. Linton, M. S. Goodman, E. Fan, S. A. van Arman and
A. D. Hamilton, J. Org. Chem., 2001, 66, 7313.
23 A. Clerici, N. Pastori and O. Porta, Tetrahedron, 1998, 54, 15679.
24 J. I. De Graw, L. Goodman and B. R. Baker, J. Org. Chem., 1961, 26,
1156.
O r g . B i o m o l . C h e m . , 2 0 0 3 , 1, 1 6 2 5 – 1 6 3 3
1633