W. J. McClellan et al. / Bioorg. Med. Chem. Lett. 21 (2011) 5620–5624
5623
Table 4
Mouse pharmacokinetic data
H
N
H
O
O
N
H2N
N
H2N
N
Compd
iv
t1/2 (h)
iv
iv
po
F (%)
S
S
Vd (L/kg)
Cl (L/h kg)
AUC (lM h)
HN
HN
HN
HN
O
O
N
N
12a
12c
20a
20c
20e
20h
0.53
0.63
2.0
1.7
1.5
1.2
4.7
0.97
3.0
0.21
0.68
1.5
5.2
0.52
1.4
1.0
0.5
21
22
0.36
1.2
12.5
1.7
18.7
8.7
Aur A IC50 820 nM
Aur B 79
Aur A IC50 816 nM
Aur B 69
0.09
0.19
36.0
23.3
16.5
20.0
2.4
Figure 4.
Table 5
Kinase selectivity profile of compound 20h
Table 3
Enzymatic Aurora and cellular Aurora (polyploidy) data for compounds of general
structure
a
Compd 20h IC50
(lM)
Aur A
AurB
Alk
Jak2
p38
<0.003
<0.003
>10.0
>10.0
>10.0
2.9
TrkA
Src
Rock1
KDR
Jnk1a
Gsk3
>10.0
>10.0
>10.0
0.66
>10.0
2.1
H
O
N
(CH2) NH
n
H2N
N
NH
O
S
R
N
Lck
a
a
a
Assayed in the presence of 100
concentration.
lM ATP
Compd
n
R
IC50 (nM)
EC15 (nM)
Aur A
Aur B
Polyploidy
19
0
1
1
1
1
1
1
1
1
1
H
H
NTb
2.5
280
2.0
6.0
27
136
172
6.0
0.2
57
35
3.8
29
0.7
19
1.3
1.0
23
354
2.0
28
5.0
<1.0
3.2
23
19
1.0
1.0
20a
20b
20c
20d
20e
20f
20g
20h
20i
2-CH3
3-CH3
4-CH3
4-CF3
3-Et
2-F
3-F
3-Cl
greatly improved by meta substitution and a one carbon homologa-
tion at the urea point of attachment. These compounds also dis-
played high selectivity for Aurora within the tested kinome.
References and notes
4.6
1. (a) Marumoto, T.; Zhang, D.; Saya, H. Nat. Rev. Cancer 2005, 5, 42; (b) Bar, A. R.;
Gergely, F. J. Cell Biol. 2007, 120, 2987.
2. Giet, R.; Glover, D. M. J. Cell Biol. 2001, 152, 669.
3. (a) Gassman, R.; Carvalho, A.; Henzing, A. J.; Ruchaud, S.; Hudson, D. F.; Honda,
R.; Nigg, E. A.; Gerloff, C. L.; Earnshaw, W. C. J. Cell Biol. 2004, 166, 179; (b)
Ditchfield, C.; Johnson, V. L.; Tighe, A.; Ellston, R.; Haworth, C.; Johnson, T.;
Mortlock, A.; Keen, N.; Taylor, S. S. J. Cell Biol. 2003, 161, 267.
a
Assayed in the presence of 1 mM ATP concentration, for assay conditions, see
Ref. 14.
b
Not tested.
4. Lens, S. M.; Wolthuis, R. M. F.; Klompmaker, R.; Kauw, J.; Agami, R.;
Brummelkamp, T.; Kops, G.; Medema, R. H. EMBO J. 2003, 22, 2934.
5. Sasai, K.; Katayama, H.; Stenolien, C. L.; Fujii, S.; Honda, T.; Kimura, M.; Okano,
Y.; Tasuka, M.; Suzuki, F.; Nigg, E. A.; Earnshaw, W. C.; Brinkley, W. R.; Sen, S.
Cell Motil. Cytoskeleton 2004, 59, 249.
6. Carvajal, R. D.; Tse, A. Clin Cancer Res 2006, 12, 6869.
7. (a) Kops, G. J. P. L.; Weaver, B. A. A.; Cleveland, D. W. Nat. Rev. Cancer 2005, 5,
773; (b) Giet, R.; Petretti, C. Trends Cell Biol. 2005, 15, 241.
tion with TFA in dichloromethane, followed by reaction with vari-
ous substituted phenyl isocyanates afforded compounds 19 and
20a–i.
One carbon homologated, para linked compounds were also
investigated. Compounds 21 and 22 (Fig. 4) were prepared analo-
gously as described in Scheme 3. These compounds were found
to be significantly less potent than the parent non-homologated
versions.
Compounds with the meta regiochemistry and one carbon
homologation in most cases exhibited excellent in vitro and cellu-
lar potency. Since compounds in this subseries approached the
limit of detection in the low ATP Aurora assay, testing was done
at the more physiologically relevant 1 mM ATP level (Table 3).
Compounds with the meta attachment and one carbon homolo-
gation also had improved pharmacokinetics compared to the lin-
ear, para linked analogs. These compounds consistently exhibit
good plasma blood levels with oral bioavailabilities often greater
than 10%. Representative compounds are shown in Table 4 along
with the para linked analogs 12a and 12c.
8. Keen, N.; Taylor, S. Nat. Rev. Cancer 2004, 4, 927.
9. (a) Harrington, E. A.; Bebbington, D.; Moore, J.; Rasmussen, R. K.; Ajose-
Adeogun, A. O.; Tomoko, N.; Graham, J. A.; Demur, C.; Hercend, T.; Diu-Hercend,
A.; Su, M.; Golec, J. M. C.; Miller, K. M. Nat. Med. 2004, 10, 262; (b) Matthews, N.;
Visintin, B. H.; Jarvis, A.; Selwood, D. L. Expert Rev. Anticancer Ther. 2006, 6, 109;
(c) Pollard, J. R.; Mortimore, M. J. Med. Chem. 2009, 52, 2629; (d) Krishna, S. N.;
Manikandan, L.; Sunanda, G. D.; Abhijit, R. Curr. Opin. Invest. Drugs 2006, 7,
1044; (e) Soncini, C. et al Clin. Cancer Res. 2006, 12, 4080.
10. Dai, Y.; Guo, Y.; Frey, R. R.; Ji, Z.; Curtin, M. L.; Ahmed, A. A.; Albert, D. H.;
Arnold, L.; Arries, S. S.; Barlozzari, T.; Bauch, J. L.; Bouska, J. J.; Bousquet, P. F.;
Cunha, G. A.; Glaser, K. B.; Guo, J.; Li, J.; Marcotte, P. A.; Marsh, K. C.; Moskey, M.
D.; Pease, L. J.; Stewart, K. D.; Stoll, V. S.; Tapang, P.; Wishart, N.; Davidsen, S. K.;
Michaelides, M. R. J. Med. Chem. 2005, 48, 6066.
11. Tornetta, B.; Guerrera, F.; Ronsisvalle, G. Annali di Chimica 1974, 64, 833.
12. Sawyer, J. S.; Schmittling, E. A.; Palkowitz, J. A.; Smith, W. J. J. Org. Chem. 1998,
63, 6338.
13. Hauf, S.; Cole, R. W.; LaTerra, S.; Zimmer, C.; Schnapp, G.; Walter, R.; Heckel, A.;
van Meel, J.; Rieder, C. L.; Peters, J.-M. J. Cell Biol. 2003, 161, 281.
14. To determine the activity of Aurora A and B kinases, a homogenous time–
resolved fluorescence (HTRF) in vitro kinase assay was used: Mathis, G.,
HTRF(R) Technology. J Biomol Screen, 1999, 4, 309; A. J. Kolb, P.V. Kaplita, D.J.
Hayes, Y-W Park, C. Pernell, J.S. Major and G. Mathis, Drug Discovery Today,
1998, 3, 333. To measure the induction of polyploidy: NCI-H1299 were seeded
(4 K/well) into 96-well culture plates (tissue culture grade, black, flat-clear
bottom) and incubated overnight to produce cell-to-plate adherence. Test
drugs at varying concentrations were added into duplicate wells containing
cells and culture media (RPMI 1640, 10% fetal calf serum) and incubated at
37°C for 48 h. The plates were then washed with PBS and the adherent cells
fixed by incubating with 3% formalin for 1 h. After washing four times with
PBS, the cells were then stained with Hoechst and subjected to fluorescent
(360i/460e) microscopic high content analysis to determine the effect of test
These urea containing thienopyrimidine amides were highly
selective for the Aurora kinases. To demonstrate the kinase selec-
tive profile of these ureas, the inhibitory activity of 20h against a
number of kinases is listed Table 5.
In summary, we identified an amide containing pyrrolopyrimi-
dine high throughput screening lead for Aurora kinase. The original
hit was then transposed to a thienopyrimidine template. Addition
of a diphenyl urea in place of the initial diphenyl ether led to Aur-
ora inhibitors with potent in vitro enzyme activity. The poor phar-
macokinetic properties of the para linked diphenyl ureas were