1660
D.M.Andrews et al./ Bioorg.Med.Chem.Lett.13 (2003) 1657–1660
Additionally, the larger isopropyl is less electronegative
than cyclopropyl, providing an electrostatic contribu-
tion to stability.19 The application of these observations
will be the subject of future communications.
8. Andrews, D. M.; Chaignot, H. M.; Coomber, B. A.;
Dowle, M. D.; Hind, S. L.; Johnson, M. R.; Jones, P. S.;
Mills, G.; Patikis, A.; Pateman, A.; Robinson, J. E.; Slater,
M. J.; Trivedi, N. Eur.J.Med.Chem. In press.
9. Borthwick, A. D.; Exall, A. M.; Haley, T. M.; Jackson,
D. L.; Mason, A. M.; Weingarten, G. G. Bioorg.Med.Chem.
Lett. 2002, 12, 1719.
10. (a) Narjes, F.; Gerlach, B.; Koch, U.; Muraglia, E.; Conte,
I.; Stansfield, I.; Matassa, V. G.; Narjes, F. Bioorg.Med.
Chem.Lett. 2002, 12, 701. (b) Review: Kwong, A. D.; Kim,
J. L.; Rao, G.; Lipovsek, D.; Raybuck, S. A. Antiviral Res.
1998, 40, 1. (c) Review: De Francesco, R.; Steinkuhler, C.
Curr.Top.Micr.Immunol. 2000, 242, 149.
11. Ma, J. C.; Dougherty, D. A. Chem.Rev. 1997, 97, 1303
and references cited therein.
12. Burley, S. K.; Petsko, G. A. In Weakly Polar Interactions
in Proteins; Anfinsen, C. B., Edsall, J. T., Richards, F. M.,
Eisenberg, D. S., Eds.; Adv. Prot. Chem. 39; Academic: San
Diego, USA, 1988; p 125.
Acknowledgements
We thank Drs. Graham Baker, Sue Bethell and Mal-
colm Ellis for provision of NS3 protease protein and
initial assay systems; Derek Evans and Tracy Redfern
for provision of intermediates; Norman M. Gray and
Seb J. Carey for biochemical test data; Dr. Nigel Parry
and Liz Amphlett for replicon test results; Anne
Cheasty, Rebecca Fenwick and Neil Roughley for
medium stability and dog clearance data; and Richard
Upton for assistance with NMR interpretation.20
13. Wada, M.; Nishihara, Y.; Akiba, K. Tetrahedron Lett.
1985, 26, 3267.
14. Kiyooka, S.; Hena, M. J.Org.Chem. 1999, 64, 5511.
15. Calculated using ACD software: Leo, A. J.Chem.Rev.
1993, 93, 1281.
References and Notes
1. World Health Organization. Weekly Epidemiol.Record
1997, 72, 65.
16. Fluorogenic assay details are described in ref 7(b) and in
references cited therein.
2. (a) Gerber, M. A. J.Hepatol. 1993, 17 (Suppl 3), 108S. (b)
Alter, M. J. Hepatology 1997, 26, 62S. (c) Hoofnagle, J. H.
Hepatology 1997, 26, 15S. (d) Kwong, A. D. Antiviral Res.
1998, 40, 1. (e) Hoofnagle, J. H. Digestion 1998, 59, 563.
3. (a) Reichard, O.; Scvarcz, R.; Weiland, O. Hepatology
1997, 26, 108 S. (b) Davis, G. L.; Esteban-Mur, R.; Rustgi, V.;
Hoefs, J.; Gordon, S. C.; Trepo, C.; Shiffman, M. L.; Zeuzem,
S.; Craxi, A.; Ling, M.-H.; Albrecht, J. N.Eng.J.Med. 1998,
339, 1493. (c) McHutchinson, J. G.; Gordon, S. C.; Schiff,
E. R.; Shiffman, M. L.; Lee, W. M.; Rustgi, V. K.; Goodman,
Z. D.; Ling, M.-H.; Cort, S.; Albrecht, J. K. N.Eng.J.Med.
1998, 339, 1485.
17. Replicon assay details are described in ref 7(b) and in
references cited therein.
18. Each compound was incubated in Dulbecco’s Minimal
Essential Medium (DMEM) at a concentration of 25 mM and
a temperature of 37 ꢀC; an aliquot was withdrawn and depro-
teinated with acetonitrile at 4 h. The samples were assayed by
LC–MS on an API-300 using APCI source and single-ion
monitoring. Results were expressed as percentage turnover.
19. Wiberg, K. B.; Laidig, K. E. J.Org.Chem. 1992, 57, 5092.
1
20. NMR assignments: 2b: H NMR (CDCl3) d 5.20 (d, J=9
Hz, 1H, NH), 4.29 (dd, J=6.5, 9 Hz, 1H, NCH2CH2), 4.19 (t,
J=9 Hz, 1H, NHCH), 3.81 (td, J=6.5, 10 Hz, 1H,
NCH2CH2), 3.61 (m, 1H, COCH(CH3)2), 3.39 (td, J=5, 11
Hz, 1H, CH2CHN), 3.27 (d, J=11 Hz, 1H, NCHCH), 2.94
(m, 1H, CH2(CH2)2), 2.77 (m, 1H, NCH2CH2CH), 2.56 (m,
1H, CH2(CH2)2), 2.12–1.94 (m, 6H, NCH2CH2CH,
CHCH(CH3)2 and CH2(CH2)2), 1.44 (s, 9H (CH3)3), 1.17 and
1.15 (dꢁ2 J=6.5 Hz, CH(CH3)2), 1.03 and 0.97 (dꢁ2, J=6.5
Hz, 3H, COCH(CH3)2). 16b: 1H NMR (CDCl3) d 5.20 (d,
J=9 Hz, 1H, NH), 4.26 (dd, J=6.5, 9 Hz, 1H, NCH2CH2),
4.21 (t, J=9 Hz, 1H, NHCH), 3.87 (td, J=6.5, 10 Hz, 1H,
NCH2CH2), 3.78 (d, J=11 Hz, 1H, NCHCH), 3.66–3.54 (m,
4H, CH2CHN, SCH2CH2S and COCH(CH3)2), 3.43 (t, J=5.5
Hz, 2H, SCH2CH2S), 2.83 (m, 1H, NCH2CH2CH), 2.03–1.92
(m, 2H, NCH2CH2CH, CHCH(CH3)2), 1.42 (s, 9H (CH3)3),
1.19 and 1.17 (dꢁ2 J=6.5 Hz, CH(CH3)2), 1.01 and 0.94
(dꢁ2, J=6.5 Hz, 3H, COCH(CH3)2).
4. May Wang, Q.; Du, M. X.; Hockman, M. A.; Johnson,
R. B.; Sun, X.-L. Drugs Future 2000, 25, 933.
5. Kolykhalov, A. A.; Mihalik, K.; Feinstone, S. M.; Rice,
C. M. J.Virol. 2000, 74, 2046.
6. Slater, M. J.; Andrews, D. M.; Baker, G.; Bethell, S. S.;
Carey, S.; Chaignot, H.; Clarke, B.; Coomber, B.; Ellis, M.;
Good, A.; Gray, N.; Hardy, G.; Jones, P.; Mills, G.; Robin-
son, E. Bioorg.Med.Chem.Lett. 2002, 12, 3359.
7. (a) Andrews, D. M.; Carey, S. J.; Chaignot, H.; Coomber,
B. A.; Gray, N. M.; Hind, S. L.; Jones, P. S.; Mills, G.;
Robinson, J. E.; Slater, M. J. Org.Lett. 2002, 4, 4475. (b)
Andrews, D. M.; Chaignot, H.; Coomber, B. A.; Good, A. C.;
Hind, S. L.; Johnson, M. R.; Jones, P. S.; Mills, G.; Robinson,
J. E.; Skarzynski, T.; Slater, M. J.; Somers, D. O. N. Org.
Lett. 2002, 4, 4479.