C−C and C−H Alkane Reductive Eliminations
A R T I C L E S
octahedral d6 center.1 The mechanisms of oxidative addition
reactions to d8 metal centers and reductive elimination reactions
from d6 metal centers are thus of considerable interest. The
formation of alkanes by C-C and C-H reductive elimination
from d6 octahedral complexes, in particular, has been extensively
studied. Carbon-carbon coupling of two alkyl groups is
frequently observed from Pt(IV) and Pd(IV) complexes,7-9 but
there are very few examples of this reaction from other d6 metal
centers.10 Mechanistic investigations of sp3C-sp3C reductive
elimination reactions from octahedral Pt(IV) and Pd(IV) com-
plexes have consistently found evidence for a five-coordinate
intermediate from which the C-C bond formation takes
place.7,8,11,12 This five-coordinate intermediate is formed by
ligand loss from the starting octahedral complex. The reactivity
and stability of Pt(IV) and Pd(IV) alkyl complexes vary
significantly with respect to the ancillary ligands present. For
Pt(IV), C-C bond formation is common for complexes with
phosphine ligands.7 In contrast, complexes with Cp or nitrogen
ligands are generally resistant to reductive elimination.8d,13,14
A notable exception is the recent report of ethane reductive
elimination from a nitrogen ligated five-coordinate Pt(IV)
trimethyl complex.9 For Pd(IV) alkyls, most phosphine ligated
species appear to be too unstable to isolate or even observe.8c,g,k
Instead, C-C reductive elimination from Pd(IV) has been
commonly observed and studied from Pd(IV) alkyls complexes
bearing nitrogen ligands.8 Very little has been reported on alkyl
C-C reductive elimination from late metal centers other than
platinum or palladium. However, it should be noted that alkyl-
alkyl coupling from an octahedral Rh(III) center was observed
only when a five-coordinate intermediate was accessible.10
Support for the involvement of five-coordinate intermediates
in sp2C-sp3C couplings from Ru(II) and Ir(III) has also been
presented.15 Thus, based on the limited empirical evidence,
alkane C-C reductive elimination from d6 octahedral complexes
seems to require a five-coordinate intermediate.11
C-H reductive elimination reactions from d6 octahedral metal
centers do not, in general, follow as distinctive a pattern in terms
of mechanism as C-C reductive elimination reactions. For alkyl
and hydrocarbyl hydride complexes of the late metals Ir(III),
Rh(III), Os(II), and Ru(II), some reactions are proposed to go
by direct reductive elimination, whereas others require ligand
dissociation prior to C-H coupling.16-19 In contrast, all of the
examples of C-H reductive elimination from Pt(IV) alkyl
hydrides that have been studied to date were found to proceed
via a preliminary ligand dissociation pathway.3d,g,h,12,20-22 In fact,
the recent discoveries of thermally stable Pt(IV) alkyl hydrides
have been attributed to the use of chelating and other types of
ligands which do not easily undergo dissociation to allow
formation of five-coordinate species.22,23 Of note, nearly all of
the Pt(IV) hydrocarbyl hydrides reported contain nitrogen
ancillary ligands.24 Nitrogen ligands generally stabilize Pt(IV)
and Pd(IV) to a greater extent than phosphine ligands.8,14,25
However, even with nitrogen ligands, there are no examples of
stable or even observable Pd(IV) alkyl hydrides. This has
necessarily precluded any studies of C-H reductive elimination
from Pd(IV). Overall, it seems that the mechanisms as well as
the thermodynamics of C-H reductive elimination are quite
sensitive to the identities of the metal and the ligand set. Further
studies are clearly required to gain general predictive power
concerning these reactions.
Although C-C and C-H reductive elimination of alkanes
is known to occur from several different late metals, Pt(IV)
shows the most examples of both reactions, and is therefore
the most promising for use in a study to directly compare the
mechanisms of C-C and C-H coupling. As noted above, in
virtually every investigation of either C-C or C-H reductive
elimination of alkanes from octahedral Pt(IV) complexes,
(16) (a) Basato, M.; Longato, B.; Morandini, F.; Bresadola, S. Inorg. Chem.
1984, 23, 3972. (b) Buchanan, J. M.; Stryker, J. M.; Bergman, R. G. J.
Am. Chem. Soc. 1986, 108, 1537. (c) Deutsch, P. P.; Eisenberg, R. J. Am.
Chem. Soc. 1990, 112, 714. (d) Harper, T. G. P.; Desrosiers, P. J.; Flood,
T. C. Organometallics 1990, 9, 2523. (e) Thompson, J. S.; Bernard, K. A.;
Rappoli, B. J.; Atwood, J. D. Organometallics 1990, 9, 2727. (f) Cleary,
B. P.; Mehta, R.; Eisenberg, R. Organometallics 1995, 14, 2297. (g)
Aizenberg, M.; Milstein, D. J. Am. Chem. Soc. 1995, 117, 6456. (h)
Okazaki, M.; Tobita, H.; Kawano, Y.; Inomata, S.; Ogino, H. J. Organomet.
Chem. 1998, 553, 1. (i) Rosini, G. P.; Wang, K.; Patel, B.; Goldman, A. S.
Inorg. Chimica. Acta 1998, 270, 537. (j) Wiley, J. S.; Oldham, W. J.;
Heinekey, D. M. Organometallics 2000, 19, 1670. (k) Kanzelberger, M.;
Singh, B.; Czerw, M.; Krogh-Jespersen, K.; Goldman, A. S. J. Am. Chem.
Soc. 2000, 122, 11 017.
(17) (a) Milstein, D. J. Am. Chem. Soc. 1982, 104, 5227. (b) Milstein, D. Acc.
Chem. Res. 1984, 17, 221. (c) Jones, W. D.; Feher, F. J. J. Am. Chem. Soc.
1984, 106, 1650. (d) Periana, R. A.; Bergman, R. G. J. Am. Chem. Soc.
1986, 108, 7332. (e) Jones, W. D.; Feher, F. J. Acc. Chem. Res. 1989, 22,
91. (f) Selmeczy, A. D.; Jones, W. D.; Osman, R.; Perutz, R. N.
Organometallics 1995, 14, 4677. (g) Wick, D. D.; Reynolds, K. A.; Jones,
W. D. J. Am. Chem. Soc. 1999, 121, 3974. (h) Northcutt, T. P.; Wick, D.
D.; Vetter, A. J.; Jones, W. D. J. Am. Chem. Soc. 2001, 123, 7257. (i)
Jones, W. D. Acc. Chem. Res. 2003, 36, 140.
(18) Shinomoto, R. S.; Desrosiers, P. J.; Harper, T. G. P.; Flood, T. C. J. Am.
Chem. Soc. 1990, 112, 704.
(19) (a) Hartwig, J. F.; Andersen, R. A.; Bergman, R. G. J. Am. Chem. Soc.
1991, 113, 6492. (b) Hartwig, J. F.; Andersen, R. A.; Bergman, R. G.
Organometallics 1991, 10, 1710. (c) Hsu, G. C.; Kosar, W. P.; Jones, W.
D. Organometallics 1994, 13, 385.
(20) (a) Stahl, S. S.; Labinger, J. A.; Bercaw, J. E. J. Am. Chem. Soc. 1996,
118, 5961. (b) Jenkins, H. A.; Yap, G. P. A.; Puddephatt, R. J.
Organometallics 1997, 16, 1946. (c) Fekl, U.; Zahl, A.; van Eldik, R.
Organometallics 1999, 18, 4156. (d) Reinartz, S.; White, P. S.; Brookhart,
M.; Templeton, J. L. Organometallics 2000, 19, 3854. (e) Reinartz, S.;
White, P. S.; Brookhart, M.; Templeton, J. L. Organometallics 2001, 20,
1709. (f) Reinartz, S.; Baik, M.-H.; White, P. S.; Brookhart, M.; Templeton,
J. L. Inorg. Chem. 2001, 40, 4726. (g) Reinartz, S.; White, P. S.; Brookhart,
M.; Templeton, J. L. J. Am. Chem. Soc. 2001, 123, 12724. (h) Norris, C.
M.; Reinartz, S.; White, P. S.; Templeton, J. L. Organometallics 2002, 21,
5649. (i) Prokopchuk, E. M.; Puddephatt, R. J. Organometallics 2003, 22,
563. (j) Prokopchuk, E. M.; Puddephatt, R. J. Organometallics 2003, 22,
787. (k) Jensen, M. P.; Wick, D. D.; Reinartz, S.; White, P. S.; Templeton,
J. L.; Goldberg, K. I. J. Am. Chem. Soc. 2003, published ASAP on the
Web June 18, 2003.
(21) (a) Hill, G. S.; Rendina, L. M.; Puddephatt, R. J. Organometallics 1995,
14, 4966. (b) Jenkins, H. A.; Yap, G. P. A.; Puddephatt, R. J. Organome-
tallics 1997, 16, 1946. (c) Hinman, J. G.; Baar, C. R.; Jennings, M. C.;
Puddephatt, R. J. Organometallics 2000, 19, 563. (d) Johansson, L.; Tilset,
M. J. Am. Chem. Soc. 2001, 123, 739. (e) Wik, B. J.; Lersch, M.; Tilset,
M. J. Am. Chem. Soc. 2002, 124, 12 116.
(22) A recent review of Pt(IV) hydrides does suggest that direct C-H reductive
elimination may be possible. Puddephatt, R. J. Coord. Chem. ReV. 2001,
219, 157.
(9) (a) Fekl, U.; Kaminsky, W.; Goldberg, K. I. J. Am. Chem. Soc. 2001, 123,
6423. (b) Fekl, U.; Goldberg, K. I. J. Am. Chem. Soc. 2002, 124, 6804.
(10) Hahn, C.; Spiegler, M.; Herdtweck, E.; Taube, R. Eur. J. Inorg. Chem.
1999, 435.
(11) A possible exception: a kinetic fit analysis indicated that in the absence
of added L, 1-2% of thermally promoted C-C reductive elimination from
L2PtMe4 (L ) MeNC, 2,6-Me2C6H3NC) proceeds without ligand dissocia-
tion. However, significant decomposition of L under the reaction conditions
hindered a complete analysis of the data.7b
(12) Puddephatt, R. J. Angew. Chem., Int. Ed. Engl. 2002, 41, 261.
(13) (a) Egger, K. W. J. Organomet. Chem. 1970, 24, 501. (b) Gschwind, R.
M.; Schlecht, S. J. Chem. Soc., Dalton Trans. 1999, 1891.
(14) Rendina, L. M.; Puddephatt, R. J. Chem ReV. 1997, 97, 1735.
(15) (a) Saunders, D. R.; Mawby, R. J. J. Chem. Soc., Dalton Trans. 1984,
2133. (b) Thompson, J. S.; Atwood, J. D. Organometallics 1991, 10, 3525.
(23) (a) O’Reilly, S.; White, P. S.; Templeton, J. L. J. Am. Chem. Soc. 1996,
118, 5684. (b) Canty, A. J.; Dedieu, A.; Jin, H.; Milet, A.; Richmond, M.
K. Organometallics 1996, 15, 2845. (c) Hill, G. S.; Vittal, J. J.; Puddephatt,
R. J. Organometallics 1997, 16, 1209. (d) Prokopchuk, E. M.; Jenkins, H.
A.; Puddephatt, R. J. Organometallics 1999, 18, 2861. (e) Haskel, A.;
Keinan, E. Organometallics 1999, 18, 4677. (f) Reinartz, S.; Brookhart,
M.; Templeton, J. L. Organometallics 2002, 21, 247. (g) Iron, M. A.; Lo,
H. C.; Martin, J. M. L.; Keinan, E. J. Am. Chem. Soc. 2002, 124,
7041.
(24) The only previously reported example of a Pt(IV) alkyl hydride complex
with phosphine ligands is (PEt3)2Pt(CH3)2(H)Cl.20a This complex undergoes
reductive elimination of methane, but mechanistic details were not reported.
(25) Hill, G. S.; Puddephatt, R. J. Organometallics 1998, 17, 1478.
9
J. AM. CHEM. SOC. VOL. 125, NO. 31, 2003 9443