L. Raimondi, M. Benaglia, F. Cozzi
FULL PAPER
Zhao, R. M. Parish, M. D. Smith, P. J. Pellecchia, C. D. Sher-
rill, K. D. Shimizu, J. Am. Chem. Soc. 2012, 134, 14306–14309;
in this article the crystallographic distance between the arene
plane and the H atom of a methyl group pointing towards the
benzene ring was reported to be 2.61 Å.
For a review on C-H/π interactions, see: a) M. Nishio, Y. Ume-
zawa, K. Honda, S. Tsuboyama, H. Suezawa, CrystEngComm
2009, 11, 1757–1788; and references cited therein. It was shown
that this interaction is dominated by dispersion and C-H/π con-
tacts cannot be considered hydrogen bonds, see: b) S. Tsuzuki,
A. Fujii, Phys. Chem. Chem. Phys. 2008, 10, 2584–2594.
For a review on arene–arene interactions, see: a) F. Cozzi, J. S.
Siegel, Pure Appl. Chem. 1995, 67, 683–689; for articles not
included in this review, see: b) F. Cozzi, R. Annunziata, M.
Benaglia, M. Cinquini, L. Raimondi, K. K. Baldridge, J. S. Sie-
gel, Org. Biomol. Chem. 2003, 1, 157–162; c) F. Cozzi, R. An-
nunziata, M. Benaglia, K. K. Baldridge, G. Auirre, J. Estrada,
Y. Sritana-Anant, J. S. Siegel, Phys. Chem. Chem. Phys. 2008,
10, 2686–2694; d) J. L. Xia, S. H. Liu, F. Cozzi, M. Mancinelli,
A. Mazzanti, Chem. Eur. J. 2012, 18, 3611–3620.
For heteroarene–arene interactions, see: a) R. Annunziata, M.
Benaglia, F. Cozzi, A. Mazzanti, Chem. Eur. J. 2009, 15, 4373–
4381; b) M. Benaglia, F. Cozzi, M. Mancinelli, A. Mazzanti,
Chem. Eur. J. 2010, 16, 7456–7468.
able results, in agreement with a previous work of ours (see
ref.[6c]).
[15] One of the referees, very correctly, pointed out that in Table 2
we should compare the experimental ΔG values with the calcu-
lated values, since we fully characterized vibrationally all opti-
mized structures. However, calculated ΔG values were found to
be less reliable than ΔE values. This is probably due to the
harmonic approximation used in the vibrational analysis, an
approximation that fails with low-energy modes of vibration.
Indeed, comparison of low-energy frequencies for the endo and
exo pairs show systematic differences, probably due to the dif-
ferent steric hindrance of the endo and exo regions. Thus, the
anharmonic contribution is probably different in the two atrop-
isomers, and this error affects the calculated ΔG values.
[16] The isolation of nonequilibrium isomeric mixtures of adducts
8–10 by flash chromatographic separation of the isomers al-
lowed the energy barriers to isomer interconversion to be deter-
mined by heating the samples in [D6]DMSO and monitoring
the isomerization process by 1H NMR analysis. As expected
on the basis of purely steric considerations, adduct 8 showed
the highest barrier (ΔG϶ = 144.0 kJmol–1 at 123 °C) followed
by compound 10 (ΔG϶ = 132.6 kJmol–1 at 125 °C), and 9 (ΔG϶
= 123.8 kJmol–1 at 92 °C). These values were in agreement with
those reported in the literature for similar adducts,[4] and con-
firmed the sensitivity of our model systems to steric effects.
[17] It is worth mentioning that compound 10 was also obtained in
lower yields (about 40%) and identical isomer ratio by stirring
overnight an equimolar mixture of anthracene and N-2-meth-
oxy-6-methylphenylmaleimide in o-xylene heated to reflux,
thus showing that the isomer ratio was not affected by the
method of preparation and confirming that the products were
indeed obtained as equilibrium mixtures.
[5]
[6]
[7]
[8]
[9]
For cation–arene interactions, see: K. K. Baldridge, F. Cozzi,
J. S. Siegel, Angew. Chem. Int. Ed. 2012, 51, 2903–2906; Angew.
Chem. 2012, 124, 2957.
When differently enriched samples of the nonequilibrium iso-
meric mixtures of adducts 4 and 6, isolated by flash chromatog-
raphy, were heated at 115 °C for 18 h in TCE endo/exo mixtures
having the same composition of the crude products were ob-
tained. These experiments, as suggested by one of the referees,
allowed us to establish that the mixture of atropisomers ob-
tained from the synthesis were indeed equilibrium mixtures and
confirmed the validity of NMR analysis of the crude products
as a method to establish their endo/exo ratios.
[18] For a recent example of the occurrence of aliphatic C-H/π in-
teractions between carbohydrates and aromatic systems, see: a)
A. G. Santana, E. Jimenez-Moreno, A. M. Gomez, F. Corzana,
C. Gonzalez, G. Jimenez-Oses, J. Jimenez-Barbero, J. L. Asen-
sio, J. Am. Chem. Soc. 2013, 135, 3347–3350. For a recent study
on C-H/π interactions, see: N. A. Seifert, D. P. Zaleski, C.
Perez, J. L. Neill, B. H. Pate, M. Vallejo-Lopez, A. Lesarri, E. J.
Cocinero, F. Castano, I. Kleiner, Angew. Chem. Int. Ed. 2014,
53, 3210–3213.
[10] A values: methyl, 1.70; ethyl, 1.75; isopropyl, 2.15; methoxy,
0.60; methylthio, 0.70 (J. A. Hirsch, Top. Stereochem. 1967, 1,
199–222). B values: methyl, 7.4; ethyl, 8.7; isopropyl, 11.1;
methoxy, 5.6 (R. Ruzziconi, S. Spizzichino, L. Lunazzi, A.
Mazzanti, M. Schlosser, Chem. Eur. J. 2009, 15, 2645–2652).
[11] a) B. W. Gung, Y. Zou, Z. Xu, J. C. Amicangelo, D. G. Irwin,
S. Ma, H.-C. Zhou, J. Org. Chem. 2008, 73, 689–693; b) J. C.
Amicangelo, B. W. Gung, D. G. Irwin, N. C. Romano, Phys.
Chem. Chem. Phys. 2008, 10, 2695–2705.
[19] L. Quaranta, O. Corminboeuf, P. Renaud, Org. Lett. 2002, 4,
39–41.
[20] W. E. Bachmann, M. C. Kloetzel, J. Am. Chem. Soc. 1938, 60,
481–485.
[21] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria,
M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B.
Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li,
H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Son-
nenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hase-
gawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai,
T. Vreven, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M.
Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Starov-
erov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell,
J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M.
Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Ad-
amo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev,
A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Mar-
tin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador,
J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B.
Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian 09,
revision D.01, Gaussian, Inc., Wallingford CT, 2009.
Received: March 20, 2014
[12] W. B. Motherwell, J. Moise, A. E. Aliev, M. Nic, S. J. Coles,
P. H. Horton, M. B. Hursthouse, G. Chessari, C. A. Hunter,
J. G. Vinter, Angew. Chem. Int. Ed. 2007, 46, 7823–7826; An-
gew. Chem. 2007, 119, 7969.
[13] For a review, see: M. Egli, S. Sarkhel, Acc. Chem. Res. 2007,
40, 197–205.
[14] It is beyond the scope of this work to discuss in depth the
reliabilities of different DFT methods in treating noncovalent
interactions (see for example Krenske and Houk,[1h] and R.
Peverati, K. K. Baldridge, J. Chem. Theory Comput. 2009, 5,
2772–2786). Despite all their drawbacks, some DFT function-
als provide a qualitatively reliable evaluation of π-π and CH-π
interactions. We tested for our purposes some of the most com-
mon functionals (the most popular B3LYP, B2PLYP, M06-2X
and BMK) with different basis sets [from 6–31G(d,p) to
cc-pVDZ]; in our case, BMK/cc-pVDZ data gave the most reli-
Published Online: July 11, 2014
4998
www.eurjoc.org
© 2014 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Eur. J. Org. Chem. 2014, 4993–4998