W. Zou et al. / Tetrahedron Letters 44 (2003) 4431–4433
4433
introduction of 4-S-Ac by replacement of 4-O-triflate
to 17 (61%) was accompanied by the inversion of
configuration at C4. Ozonolysis of 17 afforded 2%-car-
bonyl C-glycopyranoside 18 in 60–80% yield. After
base treatment of 18 we were able to obtain 4-thio-C-
furanoside 19 in 70% yield.12 The anomeric mixture of
19 was inseparable by silica gel chromatography and
6. Yoshikawa, M.; Murakami, T.; Yashiro, K.; Matsuda,
H. Chem. Pharm. Bull. 1998, 46, 1339–1340.
7. Fernandez-Bolanos, J. G.; Al-Masoudi, N. A.; Maya, I.
Adv. Carbohydr. Chem. Biochem. 2001, 57, 21–98.
8. Baudry, M.; Barberousse, V.; Descotes, G.; Faure, R.;
Pires, J.; Praly, J.-P. Tetrahedron 1998, 54, 7431–7446.
9. (a) Tsuruta, O.; Yuasa, H.; Kurono, S.; Hashimoto, H.
Bioorg. Med. Chem. Lett. 1999, 9, 807–810; (b) Yuasa,
H.; Kurono, S.; Hashimoto, H. Tetrahedron 1993, 49,
8977–8998.
1
the a/b ratio was ca. 3:1 as determined by H NMR
analysis. Both anomers were characterized by various
2D NMR techniques and the stereochemistry of b-
anomer in 19 was confirmed by the observation of an
NOE between H-1 and H-3.
10. Shao, H.; Wang, Z.; Laroix, E.; Wu, S.-H.; Jennings, H.
J.; Zou, W. J. Am. Chem. Soc. 2002, 124, 2130–2131.
1
11. Selected data for 6 and 12. For 6: H NMR (CDCl3) lH
2.50–2.53 (m, 2H, H-5e, CHHCHO), 2.66 (dd, 1H,
CHHCHO, J=7.6, 17.6 Hz), 2.90 (dd, 1H, H-5a, J=
10.0, 12.8 Hz), 3.64 (m, 2H, H-1, 2), 3.89 (m, 1H, H-3),
4.12 (m, 1H, H-4), 4.45–4.70 (m, 4H, 2×CH2Ph), 9.51 (bs,
1H, CHO); 13C NMR (CDCl3) lC 29.5 (C-5), 34.6 (C-1),
43.7 (CH2CO), 67.5 (C-4), 73.1 (CH2Ph), 73.4 (CH2Ph),
75.7 (C-2), 76.9 (C-3), 199.5 (CꢁO); HRFABMS: Calcd
for C21H25O4S (M+H): 373.1474. Found: 373.1522. For
In conclusion we have described a new method for the
preparation of 2%-carbonylalkyl thio-C-glycosides by a
tandem b-elimination and intramolecular hetero-
Michael addition. Both yield and stereoselectivity are
excellent for pyranosides, but a mixture of anomers was
obtained from thio-C-furanosides. Derivatization of the
2%-carbonyl group and further modification of the sugar
moiety could lead to useful synthetic intermediates.
1
12: H NMR (CDCl3) lH 1.96 (s, 3H, CH3), 2.33 (d, 1H,
4-OH, J=10 Hz), 2.45–2.51 (m, 2H, H-5ax, CHHCHO),
2.66 (dd, 1H, CH2CHO, J=8.4, 17.6 Hz), 2.90 (dd, 1H,
H-5eq, J=10.0, 13.2 Hz), 3.63–3.66 (m, 2H, H-1, 2), 3.97
(dd, 1H, H-3, J=2.8, 5.6 Hz), 4.11 (m, 1H, H-4), 4.43
and 4.62 (d and d, 1H each, CH2Ph, J=12.0 Hz), 4.50
and 4.72 (d and d, 1H each, CH2Ph, J=12.0 Hz), 7.28–
7.39 (m, 10H, 2×Ph); 13C NMR (CDCl3) lC 29.3 (C-5),
30.2 (CH3), 34.8 (C-1), 42.6 (CH2CO), 67.3 (C-4), 72.7
(CH2Ph), 72.8 (CH2Ph), 74.9 (C-2), 76.4 (C-3), 205.7
(CꢁO); HRFABMS: calcd for C22H27O4S (M+H):
387.1630. Found: 387.1664.
Acknowledgements
This work was supported in part by National Research
Council of Canada (to W.Z.) and National Science
Council of Taiwan (to S.-H.W.). We are grateful to Ms.
Lisa Morrison for mass spectroscopic analysis and Ms.
Suzon Laroque for her assistance in NMR analysis.
12. Selected data for 19 (a/b 3:1): HRFABMS: calcd for
C29H33O5S (M+H): 493.2049. Found: 493.1705. 19a: 1H
NMR (CDCl3) lH 2.62 (d, 1H, 5-OH, J=4.8 Hz), 2.79
(dd, 1H, CH2CHO, J=6.8, 18.8 Hz), 2.87 (dd, 1H,
CH2CHO, J=6.8, 18.8 Hz), 3.43 (dd, 1H, H-6a, J=6.4,
9.6 Hz), 3.60 (d, 1H, H-6b, J=2.8, 9.6 Hz), 3.74 (dd, 1H,
H-4, J=4.0, 10.0 Hz), 4.00 (m, 1H, H-2), 4.04 (m, 1H,
H-1), 4.13 (m, 1H, H-5), 4.29 (m, 1H, H-3), 4.48–4.64 (m,
6H, 3×CH2Ph), 7.19–3.38 (m, 15H, 3×Ph), 9.69 (s, 1H,
CHO); 13C NMR (CDCl3) lC 43.5 (C-1), 44.8
(CH2CHO), 51.4 (C-4), 70.0 (C-5), 73.8 (C-6), 82.5 (C-3),
83.4 (C-2), 200.5 (CꢁO). 19b: lH 2.78 (d, 1H, 5-OH,
J=4.8 Hz), 2.92 (dd, 1H, CHHCHO, J=6.8, 18.8 Hz),
2.98 (dd, 1H, CHHCHO, J=6.8, 18.8 Hz), 3.45 (dd, 1H,
H-6a, J=6.4, 9.6 Hz), 3.60 (d, 1H, H-6b, J=2.8, 9.6 Hz),
3.74 (dd, 1H, H-4, J=4.0, 10.0 Hz), 3.77 (m, 1H, H-1),
3.89 (m, 1H, H-2), 4.14 (m, 1H, H-5), 4.25 (m, 1H, H-3),
4.48–4.64 (m, 6H, 3×CH2Ph), 7.19–3.38 (m, 15H, 3×Ph),
9.64 (s, 1H, CHO); lC 45.0 (C-1), 50.2 (CH2CHO), 51.7
(C-4), 70.4 (C-5), 73.8 (C-6), 84.9 (C-3), 86.1 (C-2), 200.5
(CꢁO).
References
1. (a) Merrer, Y. L.; Fuzier, M.; Dosbaa, I.; Foglietti, M.-J.;
Depezay, J.-C. Tetrahedron 1997, 53, 16731–16746; (b)
Ulgar, V.; Fernandez-Bolanos, J. G.; Bols, M. J. Chem.
Soc., Perkin Trans. 1 2002, 1242–1246.
2. (a) Minakawa, N.; Kato, Y.; Uetake, K.; Kaga, D.;
Matsuda, A. Tetrahedron 2003, 59, 1699–1702; (b)
Haraguchi, K.; Takahashi, H.; Tanaka, H. Tetrahedron
Lett. 2002, 43, 5657–5660.
3. (a) Ganem, B. Acc. Chem. Res. 1996, 29, 340–347; (b)
Garg, R.; Gupta, S. P.; Gao, H.; Babu, M. S.; Debnath,
A. K.; Hansch, C. Chem. Rev. 1999, 99, 3535–3601.
4. Bellamy, F.; Barberousse, V.; Martin, N.; Passon, P.;
Millet, J.; Samreth, S.; Sepulchre, C.; Theveniaux, J.;
Horton, D. Eur. J. Med. Chem. 1995, 30, 101–115.
5. Yoshikawa, M.; Murakami, T.; Shimada, H.; Matsuda,
H.; Yamahara, J.; Tanabe, G.; Muraoka, O. Tetrahedron
Lett. 1997, 38, 8367–8370.