C O M M U N I C A T I O N S
energy15 of an amide H-bond (0.0-1.5 kcal/mol) and that resulting
from a destabilizing lone pair/lone pair interaction (1.6-2.7 kcal/
mol).15
Table 1. Association Constants (K) and Binding Free Energy
(-∆G°, 25 °C)a
-1
-1
vancomycin (1) K, M
vancomycin aglycon (2) K, M
(−∆G°, kcal mol-1
ligand
(−∆G°, kcal mol-1
)
)
More importantly and independent of the origin of the effects,
these observations have significant ramifications in the reengineer-
ing of the vancomycin structure to bind D-Ala-D-Lac, suggesting
that the design could focus principally on removing the destabilizing
lone pair interaction rather than reintroduction of a H-bond and
that this may be sufficient to compensate for 2 of the 3 orders of
magnitude in binding affinity lost with D-Ala-D-Lac. Such efforts
are underway and will be reported in due course.
3 (X ) NH)
4 (X ) CH2)
5 (X ) O)
4.4 × 105 (7.7)
3.3 × 104 (6.2)
4.3 × 102 (3.6)
5.8 × 105 (7.8)
2.5 × 104 (6.0)
3.1 × 102 (3.4)
a 25 °C, 0.00011 M vancomycin in 0.02 M sodium citrate, pH 5.1,
observed at 279 nm, ref 12.
Scheme 1
Acknowledgment. We gratefully acknowledge the financial
support of the National Institutes of Health (CA 41101) and the
Skaggs Institute for Chemical Biology. B.M.C. is a Skaggs Fellow.
Supporting Information Available: Experimental details and
characterization data for the synthesis of 4 (PDF). This material is
References
(1) Glycopeptide Antibiotics; Nagarajan, R., Ed.; Marcel Dekker: New York,
1994. Nicolaou, K. C.; Boddy, C. N. C.; Brase, S.; Winssinger, N. Angew.
Chem., Int. Ed. 1999, 38, 2096.
(2) Hubbard, B. K.; Walsh, C. T. Angew. Chem., Int. Ed. 2003, 42, 730.
(3) Wiedemann, B.; Grimm, H. In Antibiotics in Laboratory Medicine; Lorian,
V., Ed.; Williams and Wilkins: Baltimore, 1996; pp 900-1168.
(4) Nieto, M.; Perkins, H. R. Biochem. J. 1971, 123, 789.
(5) Review: Perkins, H. R. Pharmacol. Ther. 1982, 16, 181.
(6) Harris, C. M.; Kopecka, H.; Harris, T. M. J. Am. Chem. Soc. 1983, 105,
6915. Harris, C. M.; Harris, T. M. J. Am. Chem. Soc. 1982, 104, 4293.
Williamson, M. P.; Williams, D. H. J. Am. Chem. Soc. 1981, 103, 6580.
Sheldrick, G. M.; Jones, P. G.; Kennard, O.; Williams, D. H.; Smith, G.
A. Nature 1978, 271, 223. Williams, D. H.; Kalman, J. R. J. Am. Chem.
Soc. 1977, 99, 2768.
Notably, this substitution in 4 can have several effects that would
impact binding beyond those which we purport to be estimating.
In addition to removing the repulsive lone pair destabilization of
the ester O of 5, it increases the hydrophobic character of the ligand
favoring binding in a hydrophobic pocket and alters the solvation
characteristics of the ligand in a way that may favor binding relative
to 5. In this case, the difference in the 4 versus 5 binding would
overestimate the lone pair electrostatic destabilization with 5. In
addition to removing the H-bond of 3, the methylene substitution
in 4 increases its conformational flexibility and reduces its
conformational preference relative to both 3 and 5 (rigidity: 3 (trans
amide) > 5 (syn eclipsed ester) > 4) and could introduce
unfavorable steric interactions,13 both of which would disfavor
binding relative to 3. This would result in the comparison of the 4
versus 3 binding overestimating the H-bond contribution to the
binding of 3. Moreover, the simplistic partitioning of the effects
into a lost H-bond versus introduction of repulsive lone pair
interactions does not take into account cooperative enthalpic or
entropic binding enhancements attributable to adjacent binding
interactions.14 Nonetheless, the estimates are consistent with intui-
tive expectations resulting from the stabilizing differential binding
(7) Williams, D. H.; Williamson, M. P.; Butcher, D. W.; Hammond, S. J. J.
Am. Chem. Soc. 1983, 105, 1332.
(8) Review: Williams, D. H.; Bardsley, B. Angew. Chem., Int. Ed. 1999, 38,
1172.
(9) Bugg, T. D. H.; Wright, G. D.; Dutka-Malen, S.; Arthur, M.; Courvalin,
P.; Walsh, C. T. Biochemistry 1991, 30, 10408.
(10) Reviews: Walsh, C. T.; Fisher, S. L.; Park, I.-S.; Prahalad, M.; Wu, Z.
Chem. Biol. 1996, 3, 21. Walsh, C. T. Science 1993, 261, 308.
(11) The synthesis and characterization of 4 is provided in Supporting
Information.
(12) Perkins, H. R. Biochem. J. 1969, 111, 195. Nieto, M.; Perkins, H. R.
Biochem. J. 1971, 123, 773.
(13) Simple modeling of 3-5 bound to the vancomycin aglycon did not reveal
a newly introduced destabilizing steric interaction with 4 that would result
in the overestimation of the H-bond of 3. Moreover, simple interaction
energies of the three modeled complexes (Amber, Macromodel) closely
followed the trends experimentally observed herein.
(14) Searle, M. S.; Sharman, G. J.; Groves, P.; Benhamu, B.; Beauregard, D.
A.; Westwell, M. S.; Dancer, R. J.; Maguire, A. J.; Try, A. C.; Williams,
D. H. J. Chem. Soc., Perkin Trans. 1 1996, 2781.
(15) Morgan, B. P.; Scholtz, J. M.; Ballinger, M. D.; Zipkin, I. D.; Bartlett, P.
A. J. Am. Chem. Soc. 1991, 113, 297 and references therein.
JA035901X
9
J. AM. CHEM. SOC. VOL. 125, NO. 31, 2003 9315