C O M M U N I C A T I O N S
Table 2. Alkyl Radical Addition to 2a in the Presence of 1aa
chemical yield and enantioselectivity were as high as when the
freshly prepared 1a was used. The product 3j was converted to
1-phenylpropane-1-amine using SmI2.10 The absolute configuration
of 3j was determined to be S by comparing the optical rotation
with that reported in the literature.
In conclusion, we have developed a chiral ammonium salt
mediated radical addition reaction with high enantioselectivity that
offers a method of approaching enantioenriched chiral amines. To
the best of our knowledge, the level of enantioselectivity and
generality reported herein is the highest among those previously
reported. The radical reactions can be performed under metal-free,
especially tin-free conditions. The chiral ammonium salts are
recyclable after a simple aqueous workup, and the reaction
conditions are environmentally benign. Further work to expand the
scope of the reaction is underway.
entry
R
product
yield (%)b
ee (%)c
1
2
3
4
chexyl
3c
3d
3e
3f
80
71
70
55
99
99
99
81
tbutyl
1-adamantyl
noctyl
a Reactions were run with 1a (0.4 mmol), 2a (0.4 mmol), RI (0.6
mmol), Ph2SiH2 (0.4 mmol), and Et3B (0.4 mmol) in CH2Cl2 (4 mL)
with addition of air (80 mL) at -30 °C for 4 h. b Isolated yield.
c Determined by chiral HPLC analysis and compared with authentic
racemic material.
Acknowledgment. This work was supported by the Center for
Bioactive Molecular Hybrids.
Table 3. Scope of Isopropyl Radical Addition to N-Benzoyl
Hydrazones Catalyzed by 1aa
Supporting Information Available: Experimental procedures,
compound characterization, NMR spectra, and HPLC traces. This
References
(1) For reviews on radical reactions: Radicals in Organic Synthesis; Sibi, M. P.,
entry
R
product
yield (%)b
ee (%)c
Renaud, P., Eds: Wiley-VCH: New York, 2001.
(2) For reviews on stereoselective radical reactions: (a) Bar, G.; Parsons, A.
Chem. Soc. ReV. 2003, 32, 251. (b) Gue´rin, B.; Ogilvie, W. W.; Guindon,
Y. In Radicals in Organic Synthesis; Renaud, P., Sibi, M. P., Eds: Wiley-
VCH: Weinheim, 2001; Vol. 1.
(3) For reviews on enantioselective radical reactions: (a) Sibi, M. P.; Manyem,
S.; Zimmerman, J. Chem. ReV. 2003, 103, 3263. (b) Sibi, M. P.; Porter,
N. A. Acc. Chem. Res. 1999, 32, 163. (c) Renaud, P.; Gerster, M. Angew.
Chem., Int. Ed. 1998, 37, 2562.
(4) For recent reports on enantioselective radical reactions: (a) Yang, D.; Zheng,
B.-F.; Gao, Q.; Gu, S.; Zhu, N.-Y. Angew. Chem., Int. Ed. 2006, 45, 255.
(b) Hein, J. E.; Zimmerman, J.; Sibi, M. P.; Hultin, P. G. Org. Lett. 2005,
7, 2755. (c) Sibi, M. P.; Patil, K. Org. Lett. 2005, 7, 1453. (d) He, L.;
Srikanth, G. S. C.; Castle, S. L. J. Org. Chem. 2005, 70, 8140. (e) Sibi,
M. P.; Petrovic, G.; Zimmerman, J. J. Am. Chem. Soc. 2005, 127, 2390.
(5) For reviews on organocatalysis: (a) EnantioselectiVe Organocatalysis;
Dalko, P. I., Ed.; Wiley-VCH: Weinheim, 2007. (b) de Figueiredo, R. M.;
Christmann, M. Eur. J. Org. Chem. 2007, 2575. (c) Doyle, A. G.; Jacobsen,
E. N. Chem. ReV. 2007, 107, 5713. (d) List, B. Chem. Commun. 2006,
819. (e) Berkessel, A.; Gro¨ger, H. Asymmetric Organocatalysis; Wiley-
VCH: Weinheim, 2004.
1
2
3
4
5
6
7
8
9
2b
2c
2d
2e
2f
2g
2h
2i
4-Cl-Ph-
3g
3h
3i
3j
3k
3l
3m
3n
3o
81
80
81
81
79
80
77
81
72
99
99
99
99
98
98
99
99
80
4-MeC(O)-Ph-
4-NO2-Ph-
Ph-
4-OH-Ph-
4-OMe-Ph-
4-MeC(O)NH-Ph-
4-Et-Ph-
2j
CH3(CH2)6-
a Reactions were run with 1a (0.4 mmol), 2a (0.4 mmol), RI (0.6
mmol), Ph2SiH2 (0.4 mmol), and Et3B (0.4 mmol) in CH2Cl2 (4 mL)
with addition of air (80 mL) at -30 °C for 4 h. b Isolated yield.
c Determined by chiral HPLC analysis and compared with authentic
racemic material.
To evaluate the generality and the scope of the reaction, a wide
range of N-benzoyl hydrazones derived from aldehydes were
subjected to optimized conditions. Table 3 presents the results.
Radical addition reactions to aryl aldehyde derived N-benzoyl
hydrazones were all highly enantioselective (Table 3, entries 1-8).
In these cases, the trace of minor enantiomer was hardly detectable
in the chiral HPLC analysis. Aryl aldehyde derived N-benzoyl
hydrazones with an electron-poor benzene ring or an electron-rich
benzene ring gave similar results in terms of chemical yield and
enantioselectivity, showing the generality of reaction. The addition
reaction to N-benzoyl hydrazone derived from an aliphatic aldehyde
gave a moderate yield and reduced enantioselectivity (entry 9).
Radical addition to N-benzoyl hydrazone derived from a ketone
did not take place under the reaction conditions.
(6) For recent reports on organocatlysis: (a) Liu, K.; Cui, H.-F.; Nie, J.; Dong,
K.-Y.; Li, X.-J.; Ma, J.-A. Org. Lett. 2007, 9, 923. (b) Tsogoeva, S. B.;
Wei, S. Chem. Commun. 2006, 1451. (c) Huang, H.; Jacobsen, E. N. J. Am.
Chem. Soc. 2006, 128, 7170.
(7) (a) Sibi, M. P.; Hasegawa, M. J. Am. Chem. Soc. 2007, 129, 4124. (b)
Bertelsen, S.; Nielsen, M.; Jørgensen, K. A. Angew. Chem., Int. Ed. 2007,
46, 7356. (c) Mukherjee, S.; List, B. Nature 2007, 447, 152. (d) Cho, D. H.;
Jang, D. O. Chem. Commun. 2006, 5045. (e) Wessig, P. Angew. Chem.,
Int. Ed. 2006, 45, 2168. (f) Bauer, A.; Westko¨mper, F.; Grimme, S.; Bach,
T. Nature 2005, 436, 1139. (g) Aechtner, T.; Dressel, M.; Bach, T. Angew.
Chem., Int. Ed. 2004, 43, 5849.
(8) For examples on radical additions to CdN bonds: (a) Friestad, G. K.; Marie,
J.-C.; Suh, Y.; Qin, J. J. Org. Chem. 2006, 71, 7016. (b) Friestad, G. K.;
Draghici, C.; Soukri, M.; Qin, J. J. Org. Chem. 2005, 70, 6330. (c) Miyabe,
H.; Ueda, M.; Naito, T. Synlett 2004, 1140. (d) Yamada, K.; Yamamoto,
Y.; Maekawa, M.; Tomioka, K. J. Org. Chem. 2004, 69, 1531. (e) Friestad,
G. K.; Shen, Y.; Ruggles, E. L. Angew. Chem., Int. Ed. 2003, 42, 5061. (f)
Ferna´ndez, M.; Alonso, R. Org. Lett. 2003, 5, 2461. (g) Friestad, G. K.;
Qin, J. J. Am. Chem. Soc. 2001, 123, 9922.
(9) The reaction became sluggish without diphenylsilane: Barton, D. H. R.;
Jang, D. O.; Jaszberenyi, J. C. Tetrahedron Lett. 1990, 31, 4681.
(10) Hirabyashi, R.; Ogawa, C.; Sugiyra, M.; Kobayashi, S. J. Am. Chem. Soc.
2001, 123, 9493.
Although high loading of 1a was required to attain a high level
of enantioselectivity, 1a was readily recovered after a simple
aqueous workup in more than 95% yield. When the recovered 1a
was reused in the isopropyl radical addition reaction to 2a, the
JA807685R
9
J. AM. CHEM. SOC. VOL. 130, NO. 48, 2008 16153