Letters
J ournal of Medicinal Chemistry, 2003, Vol. 46, No. 18 3777
(6) Liang, B. T.; J acobson, K. A. A Physiological role of the adenosine
A3 receptor: sustained cardioprotection. Proc. Natl. Acad. Sci.
U.S.A. 1998, 95, 6995-6999.
(7) Von Lubitz, D. K.; Ye, W.; McClellan, J .; Lin, R. C. Stimulation
of adenosine A3 receptors in cerebral ischemia. Neuronal death,
recovery, or both? Ann. N. Y. Acad. Sci. 1999, 890, 93-106.
(8) Sajjadi, F. G.; Takabayashi, K.; Foster, A. C.; Domingo, R. C.;
Firestein, G. S. Inhibition of TNF-alpha expression by adeno-
sine: role of A3 adenosine receptors. J . Immunol. 1996, 156,
3435-3442.
(9) Ramkumar, V.; Stiles, G. L.; Beaven, M. A.; Ali, H. The A3
adenosine receptor is the unique adenosine receptor which
facilitates release of allergic mediators in mast cells. J . Biol.
Chem. 1993, 268, 16887-16890.
(10) Fishman, P.; Madi, L.; Bar-Yehuda, S.; Barer, F.; Del Valle, L.;
Khalili, K. Evidence for involvement of Wnt signaling pathway
in IB-MECA mediated suppression of melanoma cells. Oncogene
2002, 21, 4060-4064.
(11) Meade, C. J .; Mierau, J .; Leon, I.; Ensinger, H. A. In vivo role of
the adenosine A3 receptor: N6-2-(4-aminophenyl)ethyladenosine
induces bronchospasm in BDE rats by a neurally mediated
mechanism involving cells resembling mast cells. J . Pharmacol.
Exp. Ther. 1996, 279, 1148-1156.
(12) Kim, H. O.; J i, X.-d.; Siddiqi, S. M.; Olah, M. E.; Stiles, G. L.;
J acobson, K. A. 2-Substitution of N6-benzyladenosine-5′-uron-
amides enhances selectivity for A3-adenosine receptors. J . Med.
Chem. 1994, 37, 3614-3621.
(13) J acobson, K. A.; Knutsen, L. J . S. P1 and P2 purine and
pyrimidine receptors. In Purinergic and Pyrimidinergic Signal-
ling I; Abbracchio, M. P., Williams, M., Eds.; Handbook of
Experimental Pharmacology, Vol. 151/I; Springer-Verlag: Ber-
lin, Germany, 2001; pp 129-175.
(14) (a) Volpini, R.; Costanzi, S.; Lambertucci, C.; Taffi, S.; Vittori,
S.; Klotz, K.-N.; Cristalli, G. N6-Alkyl-2-alkynyl derivatives of
adenosine as potent and selective agonists at the human
adenosine A3 receptor and a starting point for searching A2B
ligands. J . Med. Chem. 2002, 45, 3271-3279. (b) Gao, Z.-G.;
Blaustein, J . B.; Gross, A. S.; Melaman, N.; J acobson, K. A. N6-
Substituted adenosine derivatives: selectivity, efficacy, and
species differences at A3 adenosine receptors. Biochem. Phar-
macol. 2003, 65, 1675-1684.
to be full agonists in an assay of human A3 receptor
mediated inhibition of cyclic AMP in transfected CHO
cells.16 The IC50 values were 0.21 ( 0.4 nM (4), 0.38 (
0.6 nM (3), and 1.0 ( 0.3 nM (5).
In conclusion, we have designed and synthesized
novel 4′-thioanalogues of Cl-IB-MECA as the A3 receptor
ligands on the basis of the bioisosteric rationale. We
have found novel 2-chloro-N6-methyl-4′-thioadenosine-
5′-methyluronamide (4) as a highly potent and selective
agonist at the human A3 adenosine receptor.
This result is of great significance in that there are
few highly selective A3 agonists. The selectivity of
IB-MECA is evident in some pharmacological systems
but not in others.17 Cl-IB-MECA is selective; however,
it has associated toxicity in vivo. The finding that the
4′-thio modification is associated with high potency and
selectivity significantly expands the possibilities to
design additional A3 agonists, which may potentially be
useful as in vivo tools. Thorough investigation of the
structure-activity relationship of this series and a
molecular modeling study are in progress in our labora-
tory and will be reported in due course.
Ack n ow led gm en t. This research was supported by
a grant from the Korea Science and Engineering Foun-
dation (Grant KOSEF 2002-2-21500-001-3).
Su p p or tin g In for m a tion Ava ila ble: Experimental pro-
cedures and characterization data. This material is available
Refer en ces
(1) Olah, M. E.; Stiles, G. L. The role of receptor structure in
determining adenosine receptor activity. Pharmacol. Ther. 2000,
85, 55-75.
(2) Zhou, Q. Y.; Li, C. Y.; Olah, M. E.; J ohnson, R. A.; Stiles, G. L.;
Civelli, O. Molecular cloning and characterization of an adeno-
sine receptorsthe A3 adenosine receptor. Proc. Natl. Acad. Sci.
U.S.A. 1992, 89, 7432-7436.
(3) Linden, J . Molecular approach to adenosine receptors: receptor-
mediated mechanism of tissue protection. Annu. Rev. Pharmacol.
Toxicol. 2001, 41, 775-787.
(4) Salvatore, C. A.; Tilley, S. L.; Latour, A. M.; Fletcher, D. S.;
Koller, B. H.; J acobson, M. A. Disruption of the A3 adenosine
receptor gene in mice and its effect on stimulated inflammatory
cells. J . Biol. Chem. 2000, 275, 4429-4434.
(5) (a) J acobson, K. A. A3 adenosine receptors: Novel ligands and
paradoxical effects. Trends Pharmacol. Sci. 1998, 19, 184-191.
(b) Baraldi, P. G.; Cacciari, B.; Romagnoli, R.; Merighi, S.;
Varani, K.; Borea, P. A.; Spalluto, G. A3 adenosine receptor
ligands: History and perspectives. Med. Res. Rev. 2000, 20, 103-
128.
(15) J acobson, K. A.; J i, X.-d.; Li, A.-H.; Melman, N.; Siddiqui, M.
A.; Shin, K.-J .; Marquez, V. E.; Ravi, R. G. Methanocarba
analogues of purine nucleosides as potent and selective adeno-
sine receptor agonists. J . Med. Chem. 2000, 43, 2196-2203.
(16) Gao, Z. G.; Kim, S.-K.; Biadatti, T.; Chen, W.; Lee, K.; Barak,
D.; Kim, S. G.; J ohnson, C. R.; J acobson, K. A. Structural
determinants of A3 adenosine receptor activation: nucleoside
ligands at the agonist/antagonist boundary. J . Med. Chem. 2002,
45, 4471-4484.
(17) Klotz, K.-N.; Hessling, J .; Hegler, J .; Owman, B.; Kull, B.;
Fredholm, B. B.; Lohse M. J . Comparative pharmacology of
human adenosine subtypesscharacterization of stably trans-
fected receptors in CHO cells. Naunyn-Schmiedeberg’s Arch.
Pharmacol. 1998, 357, 1-9.
J M034098E