Communications
suggest the following: a) Complexes 6Àꢀ312+ and (6À)2ꢀ424+
,
[5] a) M. Aoyagi, K. Biradha, M. Fujita, J. Am. Chem. Soc. 1999,
121, 7457 – 7458; b) M. Aoyagi, S. Tashiro, M. Tominaga, K.
Biradha, M. Fujita, Chem. Commun. 2002, 2036 – 2037; c) M.
Tominaga, S. Tashiro, M. Aoyagi, M. Fujita, Chem. Commun.
2002, 2038 – 2039.
which are sustained by 12 and 24PdII–pyridine interactions,
respectively, are not thermodynamically trapped, but rather
kinetically trapped structures; b) complex 6Àꢀ312+ is kineti-
cally formed and trapped through intramolecular complex-
ation, although the more stable (6À)2ꢀ424+ complex also exists
on a potential energy surface; c) the interconversion of
6Àꢀ312+ into (6À)2ꢀ424+ does not occur at low concentrations,
but is slowly promoted at high concentrations, and much more
strongly facilitated by removing the (6À)2ꢀ424+ complex
through crystallization.
[6] a) I. Tabushi, K. Shimokawa, N. Shimizu, H. Shirakata, K. Fujita,
J. Am. Chem. Soc. 1976, 98, 7855 – 7856; b) S. Zhao, J. H. T.
Luong, J. Chem. Soc. Chem. Commun. 1995, 663 – 664; c) D.
Whang, J. Heo, J. H. Park, K. Kim, Angew. Chem. 1998, 110, 83 –
85; Angew. Chem. Int. Ed. 1998, 37, 78 – 80; d) T. Heinz, D. M.
Rudkevich, J. Rebek, Jr., Nature 1998, 394, 764 – 766; e) S. Saito,
C. Nuckolls, J. Rebek, Jr., J. Am. Chem. Soc. 2000, 122, 9628 –
9630.
[7] For the physical properties of 5ꢀ312+, 6Àꢀ312+, and (6À)2ꢀ424+
,
Received: March 14, 2003 [Z51397]
see the Supporting Information.
[8] a) S. Sakamoto, M. Fujita, K. Kim, K. Yamaguchi, Tetrahedron
2000, 56, 955 – 964; b) Y. Yamanoi, Y. Sakamoto, T. Kusukawa,
M. Fujita, S. Sakamoto, K. Yamaguchi, J. Am. Chem. Soc. 2001,
123, 980 – 981.
Keywords: coordination modes · molecular recognition ·
nanotubes · palladium · self-assembly
.
[9] Complex 312+ was analyzed by CSI-MS to investigate the
accommodation of biphenylcarboxylate or naphthalene as a
guest. A series of [MÀ(NO3)n]n+ peaks were observed. See
Supporting Information.
[1] For reviews: a) I. Huc, J.-M. Lehn, Proc. Natl. Acad. Sci. USA
1997, 94, 2106 – 2110; b) J.-M. Lehn, Chem. Eur. J. 1999, 5, 2455 –
2463; c) G. R. L. Cousins, S.-A. Poulsen, J. K. M. Sanders, Curr.
Opin. Chem. Biol. 2000, 4, 270 – 279; d) S. J. Rowan, S. J. Cantrill,
G. R. L. Cousins, J. K. M. Sanders, J. F. Stoddart, Angew. Chem.
2002, 114, 938 – 993; Angew. Chem. Int. Ed. 2002, 41, 898 – 952.
[2] a) M. Fujita, S. Nagao, K. Ogura, J. Am. Chem. Soc. 1995, 117,
1649 – 1650; b) B. Hasenknopf, J.-M. Lehn, N. Boumediene, A.
Dupont-Gervais, A. V. Dorsselaer, B. Kneisel, D. Fenske, J. Am.
Chem. Soc. 1997, 119, 10956 – 10962; c) B. Klekota, M. H.
Hammond, B. L. Miller, Tetrahedron Lett. 1997, 38, 8639 – 8642;
d) M. Scherer, D. L. Caulder, D. W. Johnson, K. N. Raymond,
Angew. Chem. 1999, 111, 1690 – 1694; Angew. Chem. Int. Ed.
1999, 38, 1588 – 1592; e) M. Albrecht, O. Blau, R. Fröhlich,
Chem. Eur. J. 1999, 5, 48 – 56; f) S. Hiraoka, M. Fujita, J. Am.
Chem. Soc. 1999, 121, 10239 – 10240; g) Y. Kubota, S. Sakamoto,
K. Yamaguchi, M. Fujita, Proc. Natl. Acad. Sci. USA 2002, 99,
4854 – 4856; h) S. Otto, R. L. E. Furlan, J. K. M. Sanders, Science
2002, 297, 590 – 593.
[3] a) G. W. Orr, L. J. Barbour, J. L. Atwood, Science 1999, 285,
1049 – 1052; b) M. Ziegler, J. J. Miranda, U. N. Andersen, D. W.
Johnson, J. A. Leary, K. N. Raymond, Angew. Chem. 2001, 113,
755 – 758; Angew. Chem. Int. Ed. 2001, 40, 733 – 736; c) S.
Hiraoka, T. Yi, M. Shiro, M. Shionoya, J. Am. Chem. Soc. 2002,
124, 14510 – 14511; d) C.-Y. Su, Y.-P. Cai, C.-L. Chen, F. Lissner,
B.-S. Kang, W. Kaim, Angew. Chem. 2002, 114, 3519 – 3523;
Angew. Chem. Int. Ed. 2002, 41, 3371 – 3375.
[10] At 808C, broad methyl signals were observed indicating that the
coalescence temperature was being approached (see the Sup-
porting Information).
[11] Crystal data for (6À)2ꢀ424+ (C202H218N72O119Pd14, Mw = 7048.08):
crystal dimensions 0.40 0.20 0.20 mm3, triclinic, P1, a =
ꢀ
16.494(4), b = 16.610(4), c = 31.977(8) , a = 78.438(5), b =
86.281(5), g = 70.333(4)8, V= 8082(3) 3, Z = 1, 1calcd
=
1.438 mgmÀ3, F(000) = 3482, radiation: l(MoKa) = 0.71073 ,
T= 113(2) K, reflections collected/unique 51758/35688 (Rint
=
0.0585). The structure was solved by direct methods
(SHELXL-97) and refined by full-matrix least-squares methods
on F2 with 1658 parameters. R1 = 0.1255 (I > 2s(I)), wR2 =
0.3444, GOF = 1.149, max./min. residual density 3.141/
À3.798 eÀ3. Several water molecules, nitrate molecules, and
1,2-ethanediamine ligands are disordered. Guest molecules sit
on two positions (1:1 ratio) in the cavity of a host molecule. The
thermal temperature factors of some disordered groups were
constrained. The bond lengths of severely disordered molecules
were chemically restrained. CCDC-204999 contains the supple-
mentary crystallographic data for this paper. These data can be
ving.html (or from the Cambridge Crystallographic Data Centre,
12, Union Road, Cambridge CB21EZ, UK; fax: (+ 44)1223-
336-033; or deposit@ccdc.cam.ac.uk).
[4] Ligand 2 was synthesized as follows: The Mitsunobu esterifica-
tion of tetracarboxylic acid 8 with alcohol 9 gave tetrabromide
precursor 10 (82%), which is subsequently treated with tribu-
tyltin bipyridine under the Stille coupling conditions
([Pd(PPh3)4] (10 mol%), toluene, reflux) to give 2 in 13% yield.
3270
ꢀ 2003 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Angew. Chem. Int. Ed. 2003, 42, 3267 – 3270