Page 7 of 9
Journal of the American Chemical Society
Supporting Information. Experimental and computational
equivalent of 3, as outlined in Scheme 2, equation (c).
1
2
3
4
5
6
7
8
procedures, spectral data and copies of spectra for all new
compounds. This material is available free of charge via the
A further equivalent of 1 is then formed from the reac-
tion between one equivalent of 3 with 3 equivalents of
PtBu3. This corresponds to the here-in established 1:1.5
ratio of [Pd(cod)(Br)2] to PtBu3 required to make 1
without the added methanolic NaOH.
AUTHOR INFORMATION
Corresponding Authors
Based on these studies of the base-assisted and the
ligand-assisted reduction of Pd(II) to Pd(I), the pro-
posed common intermediate for both reactions is the
side product 3.
* franziska.schoenebeck@rwth-aachen.de (calculations)
* thomas.colacot@jmusa.com (experimental)
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
Notes
The above experiments clearly demonstrate that the
mole ratio of base and ligand have a significant effect
on the active catalytic species generated while con-
ducting in situ reactions.
The authors of Johnson Matthey declare the following com-
peting financial interest(s): [Pd(μ-Br)PtBu3]2 is commercially
available through JMCCT (www.jmcct.com).
ACKNOWLEDGMENTS
We thank Dr. Andrew Bond at Cambridge University for X-
ray structure determination.
SUMMARY AND CONCLUSION
This study clearly elucidates the mechanistic features
behind the reduction of a Pd(II) precursor in the pres-
ence of a phosphine ligand to form an unusual Pd(I)
dimer species.
REFERENCES
The preference for the formation of Pd(I) dimers vs
more traditional L2Pd(II)X2 complexes is influenced by
the formation of the ionic Pd(II)Br3 dimer 3 side prod-
uct, resulting from the stoichiometric reaction of
(BrPtBu3)(Br) (2) with unreacted Pd(II)Br2. This ionic
Pd(II)Br3 dimer 3 is a crucial byproduct as it acts as a
“thermodynamic sink”,. The experimental isolation
and characterization of 3 was only made possible by
carrying out experiments on gram-scale in palladium.
Treatment of this unusual ionic, dimeric, Pd(II)Br3 side
product, 3 with either an alkoxide base or additional
free PtBu3 ligand results in the formation of Pd(I) di-
mer 1, hence explaining the atom economical synthe-
sis of this Pd(I) complex.
(
1
2
) Ritter, S. K. C&EN, 2016, 94, 20.
(
) Trost, B. Foreword. In New Trends in Cross-Coupling: Theory
and Applications; Colacot, T. J., Ed.; RSC: Cambridge, 2015; pp
vii-x.
(3
) Melvin, P. R.; Balcells, D.; Hazari, N.; Nova, A. ACS Catal.
2015, 5, 5596.
) (a) Zheng, Q.; Liu, Y.; Chen, Q.; Hu, M.; Helmy, R.; Sherer, E.
(4
C.; Welch, C. J.; Chen, H. J. Am. Chem. Soc. 2015, 137, 14035. (b)
Hruszkewycz, D. P.; Balcells, D.; Guard, L. M.; Hazari, N.; Tilset,
M. J. Am. Chem. Soc. 2014, 136, 7300. (c) Farmer, J. L.; Pompeo,
M.; Lough, A. J.; Organ, M. G. Chem. Eur. J. 2014, 20, 15790. (d)
Sayah, M.; Lough, A. J.; Organ, M. G. Chem. Eur. J. 2013, 19, 2749.
(e) Chen, M.-T.; Vicic, D. A.; Chain, W. J.; Turner, M. L.;
Navarro, O. Organometallics 2011, 30, 6770.
(5) (a) Serrano, J. L.; García, L.; Pérez, J.; Pérez, E.; García, J.;
Sánchez, G.; Sehnal, P.; De Ornellas, S.; Williams, T. J.; Fairlamb,
I. J. S. Organometallics 2011, 30, 5095. (b) Nasielski, J.; Hadei, N.;
Achonduh, G.; Kantchev, E. A. B.; O'Brien, C. J.; Lough, A.;
Organ, M. G. Chem. Eur. J. 2010, 16, 10844.
In order to gain insights on the role of the identified
side products, model reactions of some of the most
applied synthetic transformations in the pharmaceuti-
cal industry, namely Buchwald-Hartwig amination, α-
arylation and Suzuki-Miyaura cross-coupling reactions
were conducted using 1 as a control vs in situ systems.
The in situ system can be very complex, where many
species can dynamically interconvert or interact de-
pending on the amount of ligand, amount and type of
base and the reaction conditions. This implies that
absolute process precision is required in catalysis to
get the optimal results and highlights the improved
results using preformed Pd(I) vs in situ generated cata-
lysts by mixing Pd(II) salts with a ligand. Further de-
tailed studies to understand the exact fate of the Pd
species in the in situ generated catalyst systems are on
the way. This will hopefully reveal the reasons behind
the consistently better performance of the preformed
Pd(I) precatalyst.
(6) (a) Wei C. S.; Davies G. H. M.; Soltani O.; Albrecht J.; Gao Q.;
Pathirana C.; Hsiao Y.; Tummala S.; Eastgate M. D. Angew.
Chem. Int. Ed. 2013, 52, 5822. (b) Organ, M. G.; Chass, G. A.;
Fang, D.-C.; Hopkinson, A. C.; Valente, C. Synthesis 2008, 2776.
(c) Kinzel, T.; Zhang, Y.; Buchwald, S. L. J. Am. Chem. Soc. 2010,
132, 14073. (d) Valente, C.; Çalimsiz, S.; Hoi, K. H.; Mallik, D.;
Sayah, M.; Organ, M. G. Angew. Chem. Int. Ed. 2012, 51, 3314. (e)
Marion, N.; Nolan, S. P. Acc. Chem. Res. 2008, 41, 1440.
(7) (a) Proutiere, F.; Aufiero, M.; Schoenebeck, F. J. Am. Chem.
Soc. 2012, 134, 606. (b) Aufiero, M.; Proutiere, F.; Schoenebeck, F.
Angew. Chem. Int. Ed. 2012, 51, 7226.
(8) (a) Nicholas, P. P. J. Org. Chem. 1987, 52, 5266. (b) Littke, A.
F.; Fu, G. C. Angew. Chem. Int. Ed. 1998, 37, 3387. (c) Nishiyama,
M; Yamamoto, T.; Koie, Y. Tetrahedron Lett. 1998, 39, 617. (d)
For a review of Pd-catalyzed coupling of aryl chlorides, see:
Littke, A. F.; Fu, G. C. Angew. Chem. Int. Ed. 2002, 41, 4176.
(9) (a) Stambuli, J. P.; Kuwano, R.; Hartwig, J. F. Angew. Chem.
Int. Ed. 2002, 41, 4746. (b) Hama, T.; Liu, X.; Culkin, D. A.;
Hartwig, J. F. J. Am. Chem. Soc. 2003, 125, 11176. (c) Christmann,
U.; Vilar, R. Angew. Chem. Int. Ed. 2005, 44, 366. (d) Li, H.;
Johansson Seechurn, C. C. C.; Colacot, T. J. ACS Catal. 2012, 2,
1147. (e) Johansson Seechurn, C. C. C.; Li, H.; Colacot, T. J. Pd-
ASSOCIATED CONTENT
ACS Paragon Plus Environment