Retrosynthetically, as shown in Scheme 1, we envisioned
that both 1 and 3 could be derived from the same aza-tricyclic
intermediate A upon hydrogenation of the double bonds and
removal of the carboxymethyl group. The key tricycle A can
be prepared via an intramolecular aza-[3 + 3] annulation of
vinylogous urethane 6,7,10 which should be accessible in
several steps from cis-1,3-disubstituted lactam 7 with
bromide 9 and glutarimide 8 as the essential starting points.
Scheme 1. Retrosynthetic Analysis
Our synthesis commenced with alkylation of TBDPS-
protected propargyl alcohol 1011,12 employing excess 1,3-
dibromopropane followed by Lindlar hydrogenation that led
to bromide 9 in 59% overall yield (Scheme 2). Lactam 7
Scheme 2. Synthesis of Lactam 7
in Ayer’s syntheses,5a and in all syntheses of these alkaloids
except for one,4a the equatorial methyl group is being intro-
duced in the latter steps of the sequence. Herein, we report
a de noVo approach to precoccinelline 1 and hippodamine 3
and their respective N-oxides 2 and 4, featuring a highly
stereoselective intramolecular aza-[3 + 3] annulation.7-10
(4) For syntheses of hippodamine, convergine, and myrrhine, see: (a)
Ayer, W. A.; Dawe, R.; Eisner, R. A.; Furuichi, K. Can. J. Chem. 1976,
54, 473. (b) Adams, D. R.; Carruthers, W.; Crowley, P. J. J. Chem. Soc.,
Chem. Commun. 1991, 1261. (c) Rejzek, M.; Stockman, R. A.; Hughes, D.
L. Org. Biomol. Chem. 2005, 3, 73.
(5) For syntheses of precoccinelline and coccinelline, see: (a) Ayer, W.
A.; Furuichi, K. Can. J. Chem. 1976, 54, 1494. (b) Mueller, R. H.;
Thompson, M. E. Tetrahedron Lett. 1979, 1991. (c) Mueller, R. H.;
Thompson, M. E.; DiPardo, R. M. J. Org. Chem. 1984, 49, 2271. (d)
Stevens, R. V.; Lee, A. W. M. J. Am. Chem. Soc. 1979, 101, 7032. (e)
Yue, C.; Nicolay, J.-F.; Royer, J.; Husson, H.-P. Tetrahedron 1994, 50,
3139. (f) Takahata, H.; Ouchi, H.; Ichinose, M.; Nemoto, H. Org. Lett.
2002, 4, 3459.
was prepared via reductive alkylation13 of 4-methyl gluta-
rimide 8.14 The Grignard reagent generated from bromide 9
was added to the Mg salt 8a formed in situ from glutarimide
8 and 1.0 equiv of CH3MgCl, and after stirring overnight at
room temperature, NaBH3CN and AcOH were added to
reduce the intermediate hemi-aminal (see 11a). The reduction
proceeded stereoselectively and afforded lactam 7 in 75%
overall yield exclusively as the 1,3-syn isomer. This is likely
a result of an axial approach of hydride to the conformation
shown for N-acyliminium ion 11b.
(6) For an elegant total synthesis of related alkaloid (-)-205B, see:
Smith, A. B., III.; Kim, D. S. Org. Lett. 2005, 7, 3247.
(7) For reviews, see: (a) Harrity, J. P. A.; Provoost, O. Org. Biomol.
Chem. 2005, 3, 1349. (b) Hsung, R. P.; Kurdyumov, A. V.; Sydorenko, N.
Eur. J. Org. Chem. 2005, 23. (c) Coverdale, H. A.; Hsung, R. P. ChemTracts
2003, 16, 238.
(8) For a review on vinylogous amide chemistry, see: Kucklander, U.
Enaminones as Synthons. In The Chemistry of Functional Groups: The
Chemistry of Enamines Part I. Rappoport, Z., Ed. John Wiley & Sons:
New York, 1994; p 523.
(9) For recent studies in this area, see: (a) Pattenden, L. C.; Wybrow,
R. A. J.; Smith, S. A.; Harrity, J. P. A. Org. Lett. 2006, 8, 3089. (b) Shintani,
R.; Hayashi, T. J. Am. Chem. Soc. 2006, 128, 6330. (c) Halliday, J. I.;
Chebib, M.; Turner, P.; McLeod, M. D. Org. Lett. 2006, 8, 3399. (d) Bose,
D. S.; Kumar, R. K. Heterocycles 2006, 68, 549. (e) Goodenough, K. M.;
Raubo, P.; Harrity, J. P. A. Org. Lett. 2005, 7, 2993. (f) Goodenough, K.
M.; Moran, W. J.; Raubo, P.; Harrity, J. P. A. J. Org. Chem. 2005, 70,
207. (g) Agami, C.; Dechoux, L.; Hebbe, S.; Me´nard, C. Tetrahedron 2004,
60, 5433. (h) Ji, S.-J.; Jiang, Z.-Q.; Lu, J.; Loh, T.-P. Synlett 2004, 831. (i)
Hedley, S. J.; Moran, W. J.; Price, D. A.; Harrity, J. P. A. J. Org. Chem.
2003, 68, 4286.
Converting 7 to the corresponding thiolactam using
Lawesson’s reagent15 followed by alkylation with R-bromo
methyl acetate gave thiol ether 12 in 90% yield over two
steps (Scheme 3). Eschenmoser sulfide contraction16 of 12
proceeded smoothly and led to the protected Z-vinylogous
(11) Toshima, K.; Ohta, K.; Ohashi, A.; Nakamura, T.; Nakata, M.;
Tatsuta, K.; Matsumura, S. J. Am. Chem. Soc. 1995, 117, 4822.
(12) See Supporting Information.
(10) For intramolecular aza-[3 + 3] annulation, see: (a) Swidorski, J.
J.; Wang, J.; Hsung, R. P. Org. Lett. 2006, 8, 777. (b) Gerasyuto, A. I.;
Hsung, R. P.; Sydorenko, N.; Slafer, B. W. J. Org. Chem. 2005, 70, 4248.
(c) Sydorenko, N.; Zificsak, C. A.; Gerasyuto, A. I.; Hsung, R. P. Org.
Biomol. Chem. 2005, 3, 2140. (d) Luo, S.; Zificsak, C. Z.; Hsung, R. P.
Org. Lett. 2003, 5, 4709. (e) Wei, L.-L.; Sklenicka, H. M.; Gerasyuto, A.
I.; Hsung, R. P. Angew. Chem., Int. Ed. 2001, 40, 1516. For references on
intermolecular aza-[3 + 3] annulation, see: (f) Sydorenko, N.; Hsung, R.
P.; Vera, E. L. Org. Lett. 2006, 8, 2611. (g) Sydorenko, N.; Hsung, R. P.;
Darwish, O. S.; Hahn, J. M.; Liu, J. J. Org. Chem. 2004, 69, 6732. (h)
Sklenicka, H. M.; Hsung, R. P.; McLaughlin, M. J.; Wei, L.-L.; Gerasyuto,
A. I.; Brennessel, W. W. J. Am. Chem. Soc. 2002, 124, 10435.
(13) (a) Karstens, W. F. J.; Stol, M.; Rutjes, F. P. J. T.; Kooijman, H.;
Spek, A. L.; Hiemstra, H. J. Organomet. Chem. 2002, 624, 244. (b) Esch,
P. M.; Hiemstra, H.; Klaver, W. J.; Speckamp, W. N. Heterocycles 1987,
26, 75. (c) Evans, D. A.; Thomas, E. W.; Cherpeck, R. E. J. Am. Chem.
Soc. 1982, 104, 3695.
(14) Handley, G. J.; Nelson, E. R.; Somers, T. C. Aust. J. Chem. 1960,
13, 129.
(15) For a recent review, see: Jesberger, M.; Davis, T. P.; Barner, L.
Synthesis 2003, 1929.
(16) (a) Roth, M.; Dubs, P.; Go¨tchi, E.; Eschenmoser, A. HelV. Chim.
Acta 1995, 54, 710. (b) Shiosaki, K. In ComprehensiVe Organic Synthesis;
Trost, B. M., Ed.; Pergamon: Oxford, 1991; Vol. 2, p 865.
4900
Org. Lett., Vol. 8, No. 21, 2006