pubs.acs.org/joc
SCHEME 1. Synthesis of Indolizidine 4 and Quinolizidine 5a
Synthetic Applications of Sulfur-Substituted
Indolizidines and Quinolizidines
Shang-Shing P. Chou,* Yi-Ching Chung, Po-An Chen,
Shan-Lun Chiang, and Chien-Jung Wu
Department of Chemistry, Fu Jen Catholic University
Taipei 24205, Taiwan, ROC
Received October 22, 2010
aReagents and conditions: (i) (a) Ts;NdCdO (3 equiv), HQ (cat.),
NaHCO3 (1 equiv), Tol, 110 °C, 4.5 h; (b) Et3N; (ii) Bu3SnH (1.2 equiv),
AIBN (0.2 equiv ꢀ 3), Tol, reflux, 4.5 h; (iii) NaH (1.5 equiv), THF,
reflux, 3 h.
SCHEME 2. Synthesis of Indolizidine 209Da
aReagents and conditions: (i) (a) C6H13MgBr (4 equiv), THF, rt, 2 h;
(b) HOAc (4 equiv), 0 °C, 5 min; (c) NaBH4 (10 equiv), MeOH, 0 °C,
30 min, 71%; (ii) Ra-Ni (10 equiv), 95% EtOH, reflux, 2 h, 71%.
Starting from the sulfur-substituted indolizidines and
quinolizidines, a few useful synthetic transformations
have been developed and the synthesis of some natural
products including indolizidine 209D, epimyrtine, lasu-
bine II, 8a-epi-dendroprimine, and 5-epi-cermizine C has
been accomplished.
some indolizidines and quinolizidines.5 For example,
3-sulfolenes 16 reacted with PTSI to generate dihydropyr-
idinones 2, which upon detosylation and intramolecular
cyclization gave the sulfur-substituted indolizidine 4 and
quinolizidine 5 (Scheme 1).5b
We now report some new synthetic applications of com-
pounds 4 and 5. Reaction of compound 4 with hexylmagne-
sium bromide at room temperature, followed by treatment
sequentially with acetic acid and NaBH4/MeOH, gave the
vinyl sulfide 6. The stereochemistry of compound 6 was
established by NOESY spectrum, and was further confirmed
by its subsequent conversion to indolizidine 209D by react-
ing with Ra-Ni in refluxing EtOH (Scheme 2).7
Similar reactions of compound 5 with methylmagnesium
bromide, acetic acid, and NaBH4 yielded the corresponding
vinyl sulfide 7. Hydrolysis of compound 7 with concentrated
hydrobromic acid provided (()-epimyrtine (Scheme 3), the
spectral data of which were in agreement with the literature
report.8
Some alkaloids have the indolizidine or quinolizidine
structures, which often show interesting biological activi-
ties.1 Many methods have been developed for the synthesis of
these novel compounds,2 but those which can be applied
both to the synthesis of indolizidines and quinolizidines are
most useful.3 We have reported a new aza-Diels-Alder
reaction of thio-substituted 3-sulfolenes with p-toluenesul-
fonyl isocyanate (PTSI) to synthesize sulfur-substituted
piperidine derivatives,4 and have used this method to prepare
(1) (a) Daly, J. W.; Spande, T. F. In Alkaloids: Chemical and Biological
Perspectives; Pelletier, S. W., Ed; Wiley: New York, 1986; Vol. 3, Chapter 1,
pp 1-274. (b) Daly, J. W.; Garraffo, H. M.; Spande, T. F. In Alkaloids:
Chemical and Biological Perspectives; Pelletier, S. W., Ed.; Pergamon: New
York, 1999; Vol. 13, pp 1-161.
(2) Michael, J. P. Nat. Prod. Rep. 2008, 25, 139–165. and other reviews in
these series.
(5) (a) Chou, S. S. P.; Chiu, H. C.; Hung, C. C. Tetrahedron Lett. 2003, 44,
4653–4655. (b) Chou, S. S. P.; Ho, C. W. Tetrahedron Lett. 2005, 46, 8551–
8554. (c) Chou, S. S. P.; Liang, C. F.; Lee, T. M.; Liu, C. F. Tetrahedron 2007,
63, 8267–8273. (d) Chou, S. S. P.; Liu, C. F. J. Chin. Chem. Soc. 2010, 57,
811–819.
(6) Chou, S. S. P.; Tsao, H. J.; Lee, C. M.; Sun, C. M. J. Chin. Chem. Soc.
1993, 40, 53–57.
(7) Takahata, H.; Kubota, M.; Ihara, K.; Okamoto, N.; Momose, T.;
Azer, N.; Eldefrawi, A. T.; Eldefrawi, M. E. Tetrahedron: Asymmetry 1998,
9, 3289–3301.
(3) For some selected syntheses, see: (a) Tehrani, K. A.; D’hooghe, M.;
De Kimpe, N. Tetrahedron 2003, 59, 3099–3108. (b) Katoh, M.; Mizutani,
H.; Honda, T. Heterocycles 2006, 69, 193–216. (c) Turunen, B. J.; Georg,
G. I. J. Am. Chem. Soc. 2006, 128, 8702–8703. (d) Lesma, G.; Colombo, A.;
Landoni, N.; Sacchetti, A.; Silvani, A. Tetrahedron: Asymmetry 2007, 18,
1948–1954. (e) Amorde, S. M.; Jewett, I. T.; Martin, S. F. Tetrahedron 2009,
65, 3222–3231. (f) Barbe, G.; Pelletier, G.; Charette, A. B. Org. Lett. 2009, 11,
3398–3401. (g) Perreault, S.; Rovis, T. Chem. Soc. Rev. 2009, 38, 3149–3159.
(4) (a) Chou, S. S. P.; Hung, C. C. Tetrahedron Lett. 2000, 41, 8323–8326.
(b) Chou, S. S. P.; Hung, C. C. Synthesis 2001, 2450–2462.
ꢀ
(8) Slosse, P.; Hootele, C. Tetrahedron Lett. 1978, 4, 397–398.
692 J. Org. Chem. 2011, 76, 692–695
Published on Web 12/17/2010
DOI: 10.1021/jo102092b
2010 American Chemical Society
r