were commercially available (Aldrich, TCI-America etc). The
para isomers were readily recognizable in the 1H NMR as
they gave rise to a pair of doublets in the aromatic region
(typically with J = 8–9 Hz). With m-xylene, the product was
C-5 adamantylated; this was readily apparent in the NMR [2
aromatic proton resonances (in 2 : 1 ratio) and 4 aromatic
carbons]. Substitution patterns for the p-disubstituted substrates
followed the expected directive effects.
in the subsequent run and the cycle was repeated several times
without compromising the efficiency of the adamantylation
reactions (as can be seen in the reported conversions summarized
in Tables 1–4).
DFT calculations
Structures for o-1, m-1, p-1, o-2, m-2, p-2, o-3, p-3, m-3, and
their protonated carbocations were optimized using molecular
point groups shown in the supplementary information by the
density functional theory (DFT) method at B3LYP/6-31G(d)
or by the Hartree–Fock method at HF/6-31G(d) level using
the Gaussian 03 package.26 Transition structures, 4H+ and 5H+,
and 5aH+, for adamantyl shift and ethyl shift were located by
changing the bond angles for Ca–Cb–Cc in 4H+, 5H+, and 5aH+
(see Scheme 2). Computed geometries were verified by frequency
calculations. Furthermore, global minima were checked by
manually changing the initial geometries and by comparing the
resulting optimized structures and their energies. The supple-
mentary information summarizes the total energies (E), relative
energies (DE), zero point energies (ZPE), Gibbs’ free energies
(G), relative Gibbs’ free energies (DG), by B3LYP/6-31G(d),
HF/6-31G(d) and by B3LYP/6-31G(d)//HF/6-31G(d) levels.
Gibbs’ free energies were evaluated by frequency calculations at
298 K under 1 atm pressure which is the default for Gaussian 03
program.
1-p-Tolyladamantane. MS (m/z%, 70 eV, EI mode) 226
(100, M+); 183 (22), 169 (80), 115 (20), 91 (30); 1H NMR
(CDCl3): 7.26 (d), 7.12 (d), 2.32 (Me), 2.08 (Ada), 1.76 (Ada),
1.89 (Ada).
1-(p-Ethylphenyl)adamantane. MS (m/z%, 70 eV, EI mode)
1
240 (80, M+), 197 (40), 183 (80), 155 (100), 91 (38); H NMR
(CDCl3) 7.25 (d), 7. 15 (d), 2.63 (Et), 2.08 (Ada), 1.90 (Ada),
1.77 (Ada), 1.23 (Et); 13C NMR (CDCl3) 148.8 (Ar, C), 141.4
(Ar, C), 127.7 (Ar, CH), 124.9 (Ar, CH), 43.4 (Ada), 37.0 (Ada),
36.0 (Ada), 29.2 (Ada), 28.5 (Et), 15.7 (Et).
1-p-Anisyladamantane. MS (m/z%, 70 eV, EI mode) 242
1
(100, M+), 185 (83), 148 (32), 77 (15); H NMR (CDCl3) 7.27
(d), 6.85 (d), 3.79 (OMe), 2.08 (Ada), 1.76 (Ada), 1.89 (Ada);
13C NMR (CDCl3) 157.5 (Ar, C), 143.9 (Ar, C), 125.9 (Ar, CH),
113.5 (Ar, CH), 55.4 (OMe), 43.5 (Ada), 36.9 (Ada), 35.7 (Ada),
29.2 (Ada).
1-(m-Fluoro-o-anisyl)adamantane. MS (m/z%, 70 eV, EI
mode) 260 (100, M+), 217 (20), 203 (45), 166 (20), 91 (10), 77
1
(8); H NMR (CDCl3) 6.93 (dd), 6.86–6.74 (m), 3.80 (OMe),
2.05 (Ada), 1.76 (Ada); 13C NMR (CDCl3) 157.4 (d, JCF = 237
Hz), 155.0, 140.6 (d, JCF = 6 Hz), 114.0 (d, JCF = 24 Hz), 112.5
(d, JCF = 9 Hz), 112.3 (d, JCF = 22 Hz), 55.7 (OMe), 40.5 (Ada),
37.2 (Ada), 29.1 (Ada); 19F NMR (CDCl3, CFCl3) −124.4 ppm.
1-m-Xylyladamantane. MS (m/z%, 70 eV, EI mode) 240
1
(100, M+), 197 (20), 183 (62), 91 (20); H NMR (CDCl3) 6.98
(d, poorly resolved; 2H), 6.83 (broad singlet appearance; 1H),
2.32 (Me), 2.08 (br-s; Ada), 1.91 (d, Ada), 1.76 (t, Ada); 13C
NMR (CDCl3) 151.6, 137.5, 127.4, 122.9, 43.4 (Ada), 37.0
(Ada), 36.1 (Ada), 29.2 (Ada), 21.8 (Me).
Scheme 2
1-p-Tolyl-1,5,7-trimethyladamantane. MS (m/z%, 70 eV, EI
mode) 268 (100; M+), 253 (53), 197 (100), 121 (47), 105 (35), 91
(25); 1H NMR (CDCl3) 7.24 (d), 7.11 (d), 2.30 (Me), 1.44 (Ada),
1.12 (Ada), 0.88 (Me).
Acknowledgements
We thank the NSF-REU program (NSF 03-577) and the NCI
of NIH (2 R15 CA 078235-02A1) for summer support for the
undergraduates who participated in this work.
1-p-Anisyl-3,5,7-trimethyladamantane. MS (m/z%, 70 eV,
EI mode) 284 (100, M+), 269 (33), 213 (61), 121 (58), 91 (28); 1H
NMR (CDCl3) 7.27 (d), 6.85 (d), 3.79 (OMe), 1.43 (Ada), 1.12
(Ada), 0.88 (Me).
References
1 (a) V. R. Reichert and L. J. Mathias, Macromolecules, 1994, 27, 7030;
(b) L. J. Mathias, V. R. Reichert, T. W. Carothers and R. M. Bozen,
Polym. Prepr., 1993, 34, 77; (c) V. R. Reichert and L. J. Mathias,
Macromolecules, 1994, 27, 7024.
2 C.-F. Huang, H.-F. Lee, S.-W. Kuo, H. Xu and F.-H. Chang, Polymer,
2004, 45, 2261.
3 (a) T. G. Archibald, A. A. Malik, K. Baum and M. R. Unroe,
Macromolecules, 1991, 24, 5261; (b) A. A. Malik, T. G. Archibald,
K. Baum and M. R. Unroe, Macromolecules, 1991, 24, 5266.
4 (a) M. Pittelkow, J. B. Christensen and E. W. Meijer, J. Polymer.
Sci., Part A: Polym. Chem., 2004, 42, 3792; (b) O. Hayashida and I.
Hamachi, Chem. Lett., 2003, 32, 288.
5 (a) E. Pinkhasssik, V. Sidorov and I. Stibor, J. Org. Chem., 1998, 63,
9644; (b) V. Kovalev, E. Shokova and Y. Luzikov, Synthesis, 1998,
1003; (c) V. V. Gorbatchuk, L. S. Savelyeva, M. A. Ziganshin, I. S.
Antipin and V. A. Sidorov, Russ. Chem. Bull., 2004, 53, 60.
6 (a) N. J. Head, G. K. S. Prakash, A. Bashir-Hashemi and G. A. Olah,
J. Am. Chem. Soc., 1995, 117, 12005; (b) M. D. Heagy, G. A. Olah
and G. K. S. Prakash, J. Org. Chem., 1995, 60, 7355.
1-(m-Methyl-o-anisyl)adamantane. MS (m/z%, 70 eV, EI
1
mode) 256 (100, M+), 213 (15), 199 (40), 91 (10); H NMR
(CDCl3) 7.15 (d, 2 Hz), 6.97 (dd), 6.77 (d, 8 Hz), 3.80 (OMe), 2.28
(Me), 2.08 (Ada), 2.05 (Ada), 1.77 (Ada); 13C NMR (CDCl3)
158.0 (Ar, C), 137.8 (Ar, C), 131.1 (Ar, CH), 127.5 (Ar, CH),
127.1 (Ar, CH), 111.9 (Ar, CH), 55.3 (OMe), 40.7 (Ada), 37.3
(Ada), 36.9 (Ada), 29.8 (Ada), 21.0 (Me).
1-(m-Fluoro-o-tolyl)-1,3,5-trimethyladamantane. MS (m/z%,
70 eV, EI mode) 286 (83, M+), 271 (100), 215 (50), 121(40); 1H
NMR (CDCl3) 7.03 (dd, 1H), 6.96–6.81 (2H), 2.30(Me), 1.57
(Ada), 1.15 (Ada), 0.88 (Me).
1-(m-chloro-o-tolyl)adamantane (mixture of 3 isomers all
with M+ at m/z 260); for major isomer: MS (m/z%, 70 eV,
EI mode) 260 (55, M+), 203 (33), 135 (44), 91 (22), 53 (100).
Recycling and reuse of the ionic liquid
7 R. C. Fort, Jr., Adamantane, the Chemistry of Diamond Molecules,
Marcel Dekker, New York, 1976, ch. 3.
8 G. A. Olah, O. Farooq, S. M. F. Farnia and A.-H. Wu, J. Org. Chem.,
1990, 55, 1516.
9 G. A. Olah, B. Torok, T. Shamma, M. Torok and G. K. S. Prakash,
Catal. Lett., 1996, 42, 5.
Following the removal of organics from the IL phase by Et2O ex-
traction, the used IL was heated in the same Schlenk tube under
high vacuum at 100 ◦C for several hours or overnight to remove
any residual organics. Recovered [BMIM][OTf] was then used
O r g . B i o m o l . C h e m . , 2 0 0 5 , 3 , 1 0 3 4 – 1 0 4 2
1 0 4 1