4898
C. A. Hutton, O. Skaff / Tetrahedron Letters 44 (2003) 4895–4898
With the formation of the protected dityrosine deriva-
tives optimised, deprotection was required to furnish
dityrosine. Hydrogenolysis of compounds 10a and 10c
would provide a one-step global deprotection, whereas
deprotection of 10b would require a further step to
remove the methyl ether groups. Hence, deprotection of
10b was not investigated. Additionally, compound 10c
was prepared in 58% yield from 4 (or 56% from iodoty-
rosine 7), whereas preparation of 10a was less efficient
(32% yield from 4). Accordingly, dityrosine (1) was
prepared by treatment of 10c with palladium-on-char-
coal under an atmosphere of hydrogen. Dityrosine (1)
was isolated in quantitative yield, and was purified by
reverse-phase HPLC for characterisation purposes.23
14. Nishiyama, S.; Kim, M. H.; Yamamura, S. Tetrahedron
Lett. 1994, 35, 8397.
15. Lygo, B. Tetrahedron Lett. 1999, 40, 1389.
16. Boisnard, S.; Carbonnelle, A.-C.; Zhu, J. Org. Lett. 2001,
3, 2061.
17. Miyaura, N.; Suzuki, A. Chem. Rev. 1995, 95, 2457.
18. Ishiyama, T.; Murate, M.; Miyaura, N. J. Org. Chem.
1995, 60, 7508.
19. Carbonnelle, A.-C.; Zhu, J. Org. Lett. 2000, 2, 3477.
20. (a) Lin, S.; Danishefsky, S. J. Angew. Chem., Int. Ed.
2002, 41, 512; (b) Kaiser, M.; Groll, M.; Renner, C.;
Huber, R.; Moroder, L. Angew. Chem., Int. Ed. 2002, 41,
780; (c) Lin, S.; Danishefsky, S. J. Angew. Chem., Int. Ed.
2001, 40, 1967; (d) Ma, D.; Wu, Q. Tetrahedron Lett.
2001, 42, 5279.
21. Yamamoto, Y.; Nakamura, H.; Fujiwara, M. J. Org.
In summary, we have developed an efficient prepara-
tion of dityrosine that employs a mild, one-pot
Miyaura-borylation–Suzuki-coupling reaction. The
optimum procedure furnishes dityrosine in four steps
Chem. 1998, 63, 7529.
22. Representative procedure: To a solution of 6c (200 mg,
0.32 mmol), Pd(dppf)Cl2·CH2Cl2 (8 mg, 0.01 mmol) and
K2CO3 (178 mg, 1.29 mmol) in DMSO (5 mL) was added
8 (78 mg, 0.31 mmol). The mixture was stirred under N2
at 80°C for 48 h. The mixture was diluted with water (30
mL), extracted with ethyl acetate (2×30 mL) and the
combined extracts were washed with 20% aq. NaCl (2×30
mL), dried (MgSO4) and concentrated in vacuo. The
residue was chromatographed on silica eluting with 1:2:2
ether/DCM/hexanes to give the protected dityrosine 10c
and 39% yield from 3-iodo-L-tyrosine. The methods
developed should be extendable to the preparation of
higher oligomers of tyrosine and work in this area is
currently underway in our laboratories.
References
1
(111 mg, 70%): H NMR (300 MHz, CDCl3) l 7.36–7.11
(30H, m), 6.98 (2H, m), 6.92 (2H, dd, J=1.9, 8.3 Hz),
6.78 (2H, d, J=8.3 Hz), 5.23 (2H, br d, J=7.9 Hz),
5.14–4.99 (8H, m), 4.90 (4H, s), 4.65 (2H, m), 3.05–3.02
(4H, m); 13C NMR (100 MHz, CDCl3) l 171.5, 155.7,
155.4, 137.4, 136.3, 135.2, 132.6, 129.3, 128.6, 128.5,
128.4, 128.3, 128.1, 128.0, 127.6, 127.4, 126.6, 113.2, 70.3,
67.1, 66.9, 55.0, 37.8; MS (ESI) m/z 1011 (M+Na+,
100%), 921 (32%).
1. Malencik, D. A.; Sprouse, J. F.; Swanson, C. A.; Ander-
son, S. R. Anal. Biochem. 1996, 242, 202.
2. Smail, E. H.; Briza, P.; Panagos, A.; Berenfeld, L. Infect.
Immun. 1995, 63, 4078.
3. Li, J.; Hodgeman, B. A.; Christensen, B. A. Insect
Biochem. Mol. Biol. 1996, 26, 309.
4. Nomura, K.; Suzuki, N. Arch. Biochem. Biophys. 1995,
319, 525.
5. LaBella, F.; Waykole, P.; Queen, G. Biochem. Biophys.
1
Data for 10b: H NMR (400 MHz, CDCl3) l 7.31–7.25
(20H, m), 6.97–6.93 (4H, m), 6.78 (2H, d, J=8.2 Hz),
5.28 (2H, br d, J=8.0 Hz), 5.12–5.09 (8H, m), 4.68 (2H,
m), 3.65 (6H, m, OMe), 3.06–3.01 (4H, m); 13C NMR
(100 MHz, CDCl3) l 172.1, 156.7, 156.4, 136.9, 135.8,
133.3, 129.9, 129.3, 129.2, 129.1, 129.0, 128.8, 128.7,
127.8, 127.6, 112.0, 67.8, 67.6, 56.3, 55.6, 37.9; MS (ESI)
m/z 859 (M+Na+, 100%).
Res. Commun. 1968, 30, 333.
6. Kanwar, R.; Balasubramanian, D. Biochemistry 2000, 39,
14976.
7. Baudry, N.; Lejeune, P.-J.; Niccoli, P.; Vinet, L.;
Carayon, P.; Mallet, B. FEBS Lett. 1996, 396, 223.
8. Brady, J. D.; Sadler, I. H.; Fry, S. C. Phytochemistry
1998, 47, 349.
9. (a) Hensley, K.; Maidt, M. L.; Yu, Z.; Sang, H.; Markes-
bury, W. R.; Floyd, R. A. J. Neurosci. 1998, 18, 8126; (b)
Souza, J. M.; Giasson, B. I.; Chen, Q.; Lee, V. M.-Y.;
Ischiropoulos, H. J. Biol. Chem. 2000, 275, 18344.
10. van der Vliet, A.; Nguyen, M. N.; Shigenaga, M. K.;
Eiserich, J. P.; Marelich, G. P.; Cross, C. E. Am. J.
Physiol. Lung Cell. Mol. Physiol. 2000, 279, L537.
11. Jacob, J. S.; Cistola, D. P.; Hsu, F. F.; Muzaffar, S.;
Mueller, D. M.; Hazen, S. L.; Heinecke, J. W. J. Biol.
Chem. 1996, 271, 19950.
12. Wells-Knecht, M. C.; Huggins, T. G.; Dyer, S. R.;
Thorpe, S. R.; Baynes, J. W. J. Biol. Chem. 1993, 268,
12348.
13. Helynck, G.; Dubertret, C.; Frechet, D.; Leboul, J. J.
Antibiot. 1998, 51, 512.
1
Data for 10a: H NMR (400 MHz, CDCl3) l 7.30–7.23
(20H, m), 6.94–6.92 (4H, m), 6.85 (2H, d, J=8.2 Hz),
6.03 (2H, br s), 5.32 (2H, br d, J=8.2 Hz), 5.17 (2H, d,
J=12.2 Hz), 5.13 (2H, d, J=12.2 Hz), 5.03 (2H, d,
J=12.2 Hz), 4.97 (2H, d, J=12.2 Hz), 4.70 (2H, m), 3.14
(2H, dd, J=4.5, 13.7 Hz), 2.84 (2H, dd, J=7.6, 13.7 Hz);
13C NMR (100 MHz, CDCl3) l 171.4, 155.7, 152.8,
136.0, 134.9, 131.5, 131.1, 128.6, 128.6, 128.5, 128.4,
128.2, 128.0, 127.9, 122.9, 116.8, 67.4, 67.0, 55.1, 38.2;
MS (ESI) m/z 831 (M+Na+, 100%).
1
23. Data for 1: H NMR (300 MHz, D2O/DCl) l 7.02 (2H,
br d, J=8.3 Hz), 6.92 (2H, br s), 6.79 (2H, d, J=8.3 Hz),
4.13 (2H, m), 3.11 (2H, dd, J=5.6, 14.7 Hz), 2.98 (2H,
dd, J=7.4, 14.7 Hz), in accordance with literature values
(Refs. 14 and 15).