M. Adamczyk et al. / Tetrahedron Letters 42 (2001) 5621–5623
5623
Adamantane, carbazole and dansyl haptens (8a–c) form
highly antigenic protein conjugates that elicit selective,
high affinity antibodies.25–27 The distinctive structure of
the haptens ensures minimal cross-reactivity with
potentially interfering substances when they are used in
nucleic acid testing (NAT). The requisite hapten-phos-
phoramidites (11a–c) necessary for NAT were prepared
21. Shimizu, M.; Tanaka, H.; Hayakawa, H.; Miyasaka, T.
Tetrahedron Lett. 1990, 31, 1295–1298.
22. The amine 8a was prepared from 3-(4-nitro-
phenyl)adamantaneacetic10 and 2-amino-6-(tert-butoxy-
carbonyl)aminohexane in two steps (HOBt, Et3N, EDAC
in CH2Cl2 then 6.0 M aq HCl); amine 8b was prepared
from 2-hydroxy-carbazole and 6-(p-toluenesulfonyloxy)-
N-(tert-butoxycarbonyl)aminohexane in two steps (anhy-
drous K2CO3, NaI, methyl ethyl ketone then 4.0 M aq
HCl); amine 8c was prepared from dansyl chloride and
2-amino-6-(tert-butoxycarbonyl)-aminohexane in two
steps (Na2CO3 THF–water then 6.0 M aq HCl).
on
a
6-[(2E)-N-(6-hexyl)prop-2-enamidyl)]-2%-deoxy-
uridine scaffold in good overall yield from 2%-deoxy-
uridine.
23. Preparative reversed-phase (RP) HPLC was carried out
using Waters column (Symmetry, C18, 7.0 mm, 10×100
mm; MeCN:water/75:25, 45.0 mL/min at 225 nm). Ana-
lytical reversed phase (RP) HPLC was carried out using
Waters column (Symmetry, C18, 7.0 mm, 10×100 mm).
24. Selected data for DNA Probes 11a–c: Probe 11a: Analyt-
ical RP HPLC: MeCN:water/76:24, 2.0 mL/min at 225
References
1. Agrawal, S.; Iyer, R. P. Curr. Opin. Biotechnol. 1995, 6,
9–12.
2. Goodchild, J. Bioconjugate Chem. 1990, 1, 165–187.
3. Kricka, L. J. Clin. Chem. 1999, 45, 453–458.
4. Adamczyk, M.; Chan, C. M.; Fino, J. R.; Mattingly, P.
G. J. Org. Chem 2000, 65, 596–601.
1
nm, tR: 11.59 and 14.60 min, 96%; H NMR (CD3CN):
9.15 (br s, 1H), 8.14–8.10 (m, 2H), 7.56–7.52 (m, 2H),
7.45–7.40 (m, 2H), 7.34–7.15 (m, 8 H), 6.88–6.78 (m, 5H),
6.50–6.45 (m, 1H), 6.40 (br t, 1H), 6.14–6.06 (m, 1H),
5.69 (d, 1H, J=1.4 Hz), 4.56–4.36 (m, 1H), 4.08–3.96 (m,
1H), 3.75–3.62 (m, 8 H), 3.56–3.28 (m, 5H), 3.23–3.08 (m,
5H), 2.75–2.65 (m, 1H), 2.58 (t, 1H, J=6.0 Hz), 2.45 (t,
1H), J=6.0 Hz), 2.31–2.18 (m, 1H), 2.17–2.11 (m, 2H),
1.89–1.81 (m, 4H), 1.75 (br s, 1H), 1.69–1.62 (m, 6H),
1.48–1.38 (m, 4H), 1.36–1.27 (m, 4H), 1.14–1.05 (m, 9H),
0.92 (d, 3H, J=6.8 Hz); 31P NMR (CD3CN): 148.63,
148.55; ESI–MS (m/z): 1197 (M+H)+, 1218 (M+Na)+.
Probe 11b: Analytical RP HPLC: MeCN:water/75:25, 2.0
mL/min at 225 nm, tR: 14.47 and 18.14 min, 98%; 1H
NMR (CD3CN): 9.28 (br s, 1H), 7.93 (d, 1H, J=7.7 Hz),
7.89 (d, 1H, J=8.5 Hz), 7.42–7.11 (m, 13H), 6.96 (d, 1H,
J=2.2 Hz), 6.84–6.72 (m, 6H), 6.45–6.39 (m, 1H), 6.17–
6.07 (m, 1H), 5.70 (d, 1H, J=2.5 Hz), 4.55–4.34 (m, 1H),
4.03 (t, 2H, J=6.5 Hz), 4.0–3.92 (m, 1H, 3.74–3.62 (m,
7H), 3.55–3.31 (m, 5H), 3.27–3.18 (m, 3H), 2.73–2.63 (m,
1H), 2.57 (t, 1H, J=6.3 Hz), 2.44 (t, 1H, J=6.0 Hz),
2.30–2.22 (m, 1H), 1.83–1.74 (m, 2H), 1.56–1.35 (m, 6H),
1.12–1.03 (m, 9H), 0.92 (d, 3H, J=6.6 Hz); 31P NMR
(CD3CN): 148.66, 148.59; ESI–MS (m/z): 1065 (M+H)+.
Probe 11c: Analytical RP HPLC: MeCN:water/72:28, 2.0
mL/min at 225 nm, tR: 13.98 and 17.76 min, 96%; 1H
NMR (CD3CN): 8.97 (brs, 1H), 8.51 (d, 1H, J=8.5 Hz),
8.27 (d, 1H, J=8.5 Hz), 8.18–8.15 (m, 1H), 7.62–7.56 (m,
2H), 7.45–7.40 (m, 2H), 7.34–7.16 (m, 9H), 6.84–6.77 (m,
4H), 6.59 (br q, 1H, J=5.5 Hz), 6.44–6.39 (m, 1H),
6.16–6.07 (m, 1H), 5.81 (t, 1H, J=6.0 Hz), 5.70–5.69 (m,
1H), 4.55–4.36 (m, 1H), 4.01–3.93 (m, 1H), 3.75–3.51 (m,
6H), 3.52–3.60 (m, 2H), 3.56–3.24 (m, 4H), 3.31–3.03 (m,
2H), 2.85–2.77 (m, 8H), 2.74–2.64 (m, 1H), 2.57 (t, 1H,
J=6.0 Hz), 2.45 (t, 1H, J=6.0 Hz), 2.31–2.16 (m, 1H),
1.30–1.20 (m, 4H), 1.12–1.03 (m, 13H), 0.92 (d, 3H,
J=6.6 Hz); 31P NMR (CD3CN): 148.64, 148.55; ESI–MS
(m/z): 1132 (M+H)+.
5. Pringle, M. J. J. Clin. Ligand Assay 1999, 22, 105–122.
6. Cook, F. A.; Vuocolo, E.; Brankel, C. L. Nucleic Acids
Res. 1988, 16, 4077–4095.
7. Coull, J. M.; Weith, H. L; Bischoff, R. Tetrahedron Lett.
1986, 27, 3991–3994.
8. Langer, P. R.; Waldrop, A. A.; Ward, D. C. Proc. Natl.
Acad. Sci. USA 1981, 78, 6633–6637.
9. Telser, J.; Cruickshank, K. A.; Morrison, L. E.; Netzel,
T. L. J. Am. Chem. Soc. 1989, 111, 6966–6976.
10. Fino, J. R.; Mattingly, P. G.; Ray, K. Bioconjugate
Chem. 1996, 7, 274–280.
11. Cruickshank, K. A.; Stockwell, D. L. Tetrahedron Lett.
1988, 29, 5221–5224.
12. Dreyer, G. B.; Dervan, P. B. Proc. Nat. Acad. Sci. USA
1985, 82, 968–972.
13. Kittaka, A.; Asakura, T.; Kuze, T.; Tanaka, H.;
Yamada, N.; Nakamura, K. T.; Miyasaka, T. J. Org.
Chem. 1999, 64, 7081–7093.
14. Muhlegger, K.; Batz, H.-G.; Bohm, S. Nucleosides Nucle-
otides 1989, 8, 1161–1163.
15. Agrawal, S. In Methods in Molecular Biology; Walker, J.
M., Ed. Protocols for oligonucleotide conjugates. Synthe-
sis and analytical techniques; Humana Press: Totowa,
NJ, 1994; Vol. 26.
16. Ruth, J. L. In Oligonucleotides and Analogues. A Practical
Approach; Eckstein, F., Ed. Oligodeoxynucleotides with
reporter groups attached to the base; IRL Press: New
York, 1991.
17. Ruth, J. L.; Morgan, C.; Pasko, A. DNA 1985, 4, 1993.
18. Sanghvi, Y. S.; Hoke, G. D.; Freier, S. M.; Zounes, M.
C.; Gonzalez, C.; Cummins, L.; Sasmor, H.; Cook, P. D.
Nucleic Acids Res. 1993, 21, 3197–3203.
19. Sanghvi, Y. S.; Hoke, G. D.; Zounes, M. C.; Freier, S.
M.; Martin, J. F.; Chan, H.; Acevedo, O. L.; Ecker, D.
J.; Mirabelli, C. K.; Crooke, S. T.; Cook, P. D.
Nucleosides Nucleotides 1991, 10, 345–346.
25. Mattingly, P. G. US Patent 5,424,414.
20. Tanaka, H.; Hayakawa, H.; Iijima, S.; Haraguchi, K.;
26. Fino, J. R. US Patent 5,464,746.
Miyasaka, T. Tetrahedron 1985, 41, 861–866.
27. Shreder, K. Methods 2000, 20, 372–379.
.