Y. Hitotsuyanagi et al. / Tetrahedron Letters 44 (2003) 5901–5903
5903
the production of 12 being effectively reduced in the
latter. When the concentration of the starting
dichloromethane solution of 8 was diluted to 0.013 M,
the yield of 11 increased to 56% (entry 9). However,
further dilution of the starting material (0.0063 M) did
not give further increase in the yield of 11 (entry 10).16
Although this type of cycloisodityrosine is known to
readily epimerize at the C-terminus chiral center,6e–g,7b
under these reaction conditions, apparently no epimer-
ization took place: no epimerized cycloisodityrosine
was separated.17
7. (a) Beugelmans, R.; Bigot, A.; Bois-Choussy, M.; Zhu, J.
J. Org. Chem. 1996, 61, 771–774; (b) Bigot, A.; Beugel-
mans, R.; Zhu, J. Tetrahedron 1997, 53, 10753–10764; (c)
Bigot, A.; Dau, M. E. T. H.; Zhu, J. J. Org. Chem. 1999,
64, 6283–6296; (d) Boisnard, S.; Carbonnelle, A.-C.; Zhu,
J. Org. Lett. 2001, 3, 2061–2064; (e) Boisnard, S.; Zhu, J.
Tetrahedron Lett. 2002, 43, 2577–2580.
8. Poupardin, O.; Ferreira, F.; Genet, J. P.; Greck, C.
Tetrahedron Lett. 2001, 42, 1523–1526.
9. Hitotsuyanagi, Y.; Hasuda, T.; Matsumoto, Y.;
Yamaguchi, K.; Itokawa, H.; Takeya, K. Chem. Commun.
2000, 1633–1634.
In the same manner, dipeptide 10 was cyclized by using
its dichloromethane solution at 0.013 M to afford 1318
in a moderate yield of 35%, which constitutes the
cycloisodityrosine moiety of RP 66453 (2) (Scheme 2).
10. Chan, D. M. T.; Monaco, K. L.; Wang, R.-P.; Winters, M.
P. Tetrahedron Lett. 1998, 39, 2933–2936.
11. Evans, D. A.; Katz, J. L.; West, T. R. Tetrahedron Lett.
1998, 39, 2937–2940.
12. Lam, P. Y. S.; Clark, C. G.; Saubern, S.; Adams, J.;
Winters, M. P.; Chan, D. M. T.; Combs, A. Tetrahedron
Lett. 1998, 39, 2941–2944.
13. This method of diaryl ether formation was applied to the
synthesis of (S,S)-isodityrosine, but the reaction was
Our methods described above provide shorter routes
for the preparation of the two types of cycloisodityrosi-
nes from commercially available chiral tyrosine deriva-
tives. Thus, it is now possible to obtain sufficient
quantities of cycloisodityrosines, which will facilitate
the analogue syntheses of bouvardin (1), RA-VII (3)
and RP 66453 (2) for their structure–activity relation-
ship studies and designing of more promising antitumor
peptide analogues or of neurotensin antagonists.
carried out between protected 4-borono-
and a -DOPA derivative. Jung, M. E.; Lazarova, T. I. J.
Org. Chem. 1999, 64, 2976–2977.
L-phenylalanine
L
14. Aoyama, T.; Terasawa, S.; Sudo, K.; Shioiri, T. Chem.
Pharm. Bull. 1984, 32, 3759–3760.
15. Coutts, S. J.; Adams, J.; Krolikowski, D.; Snow, R. J.
Tetrahedron Lett. 1994, 35, 5109–5112.
16. Representative reaction procedure—To a solution of dipep-
References
tide 8 (43.2 mg, 0.0837 mmol) in CH2Cl2 (6.7 mL) were
1. Jolad, S. D.; Hoffmann, J. J.; Torrance, S. J.; Wiedhopf,
R. M.; Cole, J. R.; Arora, S. K.; Bates, R. B.; Gargiulo,
R. L.; Kriek, G. R. J. Am. Chem. Soc. 1977, 99, 8040–8044.
2. (a) Itokawa, H.; Takeya, K.; Mihara, K.; Mori, N.;
Hamanaka, T.; Sonobe, T.; Iitaka, Y. Chem. Pharm. Bull.
1983, 31, 1424–1427; (b) Itokawa, H.; Takeya, K.; Mori,
N.; Hamanaka, T.; Sonobe, T.; Mihara, K. Chem. Pharm.
Bull. 1984, 32, 284–290.
,
added DMAP (51.0 mg, 0.417 mmol) and powdered 4 A
molecular sieves (200 mg), and the mixture was stirred at
room temperature for 30 min. Copper(II) acetate (15.3 mg,
0.0842 mmol) was added to the mixture, and the mixture
was stirred at room temperature for 48 h. The mixture was
filtered, and the filtrate was diluted with CHCl3 (30 mL).
The CHCl3 solution was washed successively with 5%
aqueous KHSO4 (10 mL) and brine (10 mL), dried over
MgSO4 and filtered. The solvent was removed in vacuo,
and the residue was separated by HPLC (ODS, MeOH–
H2O, 55:45) to afford cycloisodityrosine 11 (21.9 mg, 56%,
[h]2D1 +53°, c 0.25, CHCl3; lit.6g [h]D25 +57°, c 0.6, CHCl3)
and peptide 12 (2.2 mg, 6%).
3. Itokawa, H.; Takeya, K.; Hitotsuyanagi, Y.; Morita, H. In
The Alkaloids; Cordell, G. A., Ed.; Academic Press: New
York, 1997; Vol. 49, pp. 301–387.
4. Helynck, G.; Dubertret, C.; Frechet, D.; Leboul, J. J.
Antibiot. 1998, 51, 512–514.
5. (a) Inaba, T.; Umezawa, I.; Yuasa, M.; Inoue, T.; Mihashi,
S.; Itokawa, H.; Ogura, K. J. Org. Chem. 1987, 52,
2957–2958; (b) Inoue, T.; Inaba, T.; Umezawa, I.; Yuasa,
M.; Itokawa, H.; Ogura, K.; Komatsu, K.; Hara, H.;
Hoshino, O. Chem. Pharm. Bull. 1995, 43, 1325–1335; (c)
Inoue, T.; Sasaki, T.; Takayanagi, H.; Harigaya, Y.;
Hoshino, O.; Hara, H.; Inaba, T. J. Org. Chem. 1996, 61,
3936–3937.
6. (a) Boger, D. L.; Yohannes, D. J. Am. Chem. Soc. 1991,
113, 1427–1429; (b) Boger, D. L.; Yohannes, D.; Zhou, J.;
Patane, M. A. J. Am. Chem. Soc. 1993, 115, 3420–3430;
(c) Boger, D. L.; Patane, M. A.; Zhou, J. J. Am. Chem.
Soc. 1994, 116, 8544–8556; (d) Boger, D. L.; Zhou, J. J.
Am. Chem. Soc. 1995, 117, 7364–7378; (e) Boger, D. L.;
Zhou, J.; Borzilleri, R. M.; Nukui, S. Bioorg. Med. Chem.
Lett. 1996, 6, 1089–1092; (f) Boger, D. L.; Zhou, J. J. Org.
Chem. 1996, 61, 3938–3939; (g) Boger, D. L.; Zhou, J.;
Borzilleri, R. M.; Nukui, S.; Castle, S. L. J. Org. Chem.
1997, 62, 2054–2069; (h) Krenitsky, P. J.; Boger, D. L.
Tetrahedron Lett. 2002, 43, 407–410.
17. The epimer of 11 is less polar than 11 and more polar than
peptide 12 (the data not shown). Thus, if present, the
epimer of 11 should have been separated by ODS-HPLC
under the conditions described in Ref. 16.
18. Data for 13: colorless prisms, mp 96–99°C (from isopropyl
ether), [h]2D1 +145° (c 0.10, CHCl3), H NMR (500 MHz,
1
CDCl3, 313 K) l 7.43 (dd, 1H, J=8.3, 2.1 Hz), 7.22 (dd,
1H, J=8.3, 2.5 Hz), 7.08 (dd, 1H, J=8.3, 2.1 Hz), 6.88 (dd,
1H, J=8.3, 2.5 Hz), 6.78 (d, 1H, J=8.2 Hz), 6.58 (dd, 1H,
J=8.2, 1.5 Hz), 6.52 (br s, 1H), 5.01 (m, 1H), 4.78 (d, 1H,
J=1.5 Hz), 4.40 (br t, 1H, J=8 Hz), 4.06 (br s, 1H), 3.95
(s, 3H), 3.79 (s, 3H), 3.61 (d, 1H, J=15.6 Hz), 3.57 (dd,
1H, J=13.4, 5.1 Hz), 2.64 (dd, 1H, J=13.4, 12.3 Hz), 2.56
(dd, 1H, J=15.6, 6.8 Hz), 1.45 (s, 9H); 13C NMR (125
MHz, CDCl3, 313 K) l 171.68 (s), 171.14 (s), 158.15 (s),
155.85 (s), 152.90 (s), 147.20 (s), 134.38 (s), 133.40 (d),
130.15 (d), 128.02 (s), 125.63 (d), 123.41 (d), 123.37 (d),
116.32 (d), 112.60 (d), 81.06 (s), 56.28 (q), 53.52 (d), 53.23
(d), 52.53 (q), 38.51 (t), 33.07 (t), 28.29 (q).