Published on Web 08/09/2003
Modular and Tunable Chemosensor Scaffold for Divalent Zinc
Melissa D. Shults, Dierdre A. Pearce, and Barbara Imperiali*
Contribution from the Department of Chemistry, Massachusetts Institute of Technology,
Cambridge, Massachusetts 02139
Received April 11, 2003; E-mail: imper@mit.edu
Abstract: A modular peptide scaffold has been developed for fluorescent sensing of divalent zinc. The
signaling component of the chemosensor is the chelation-sensitive fluorophore 8-hydroxy-5-(N,N-
dimethylsulfonamido)-2-methylquinoline, which is prepared as the protected amino acid derivative Fmoc-
Sox-OH and integrated into peptide sequences. Nineteen synthetic peptides incorporating the signaling
element exhibit a range of affinities for Zn2+ through variation of the type and number of Zn2+ ligands,
ligand arrangement and the â-turn sequence that acts as a preorganization element between the ligands.
The stoichiometry of the peptide-Zn2+ complexes is evaluated by several criteria. The fluorescence response
of these peptides to pH and various important metal ions is reported. Eleven of these sequences form only
1:1 complexes with Zn2+ and their affinities range from 10 nM to nearly 1 µM. When used in concert, these
sensors can provide Zn2+ concentration information in a valuable range.
introduction of ratiometric ZnAF-R11 and carbonic anhydrase-
based12 probes are also progress toward tools for determining
Introduction
Selective and tunable chemosensors for selected transition
metal ions have the potential to afford qualitative and quantita-
tive information about the presence, distribution and concentra-
tion of these metal ions in cells or tissues. Sensing divalent zinc
is particularly desirable because of its physiological importance.1
Zn2+ is involved in cellular signaling pathways,2 is implicated
in signaling at neural synapses,3 and is co-released with insulin
from glucose-stimulated pancreatic islet â-cells.4 A plethora of
examples exist in the literature of intensity-based Zn2+ fluoro-
phore sensors,5 from the earliest and widely used Zinquin and
TSQ6 to improved intensity probes such as ZPs,7 ZnAFs,8
FluoZin-3,9 and those based on carbonic anhydrase.10 The
Zn2+ concentrations. Optimized sensors are still needed to
quantify nanomolar to micromolar Zn2+ concentrations. Previ-
ously, this laboratory has developed peptide-based Zn2+
sensors13-15 and we now report a new generation of smaller,
more sensitive chemosensors with tuned affinity for divalent
zinc in this range originating from the modular peptide
architecture.
Quantifying free Zn2+ is only possible at Zn2+ concentrations
at or near the dissociation constant of the chemosensor. Many
of the currently available chemosensors are limited in that they
either form 1:2 Zn2+:chemosensor complexes5 and/or that they
have very tight affinities (sub nM).7-9,11 Progress toward tuning
selective Zn2+ chemosensors for monitoring Zn2+ at higher
concentrations has been achieved but not without shortcomings.
The dissociation constant of a dansylamide-polyamine mac-
rocycle Zn2+ sensor has been reduced to nearly 1 µM by altering
the chelator moiety.16 However, the Zn2+ complexes of chemosen-
sors containing aliphatic amine ligands exhibit significant
competition with protons at physiological pH. Gee et al. have
removed carboxylate ligands from Ca2+ chemosensors to obtain
(1) (a) Vallee, B. L.; Falchuk, K. H. Physiol. ReV. 1993, 73, 79-118. (b) Frau´sto
da Silva, J. J. R.; Williams, R. J. P. The Biological Chemistry of the
Elements: The Inorganic Chemistry of Life, 2nd ed.; Oxford University
Press: Oxford, 2001.
(2) Beyersmann, D.; Haase, H. BioMetals 2001, 14, 331-341.
(3) (a) Frederickson, C. J.; Bush, A. I. BioMetals 2001, 14, 353-366. (b)
Frederickson, C. J.; Suh, S. W.; Silva, D.; Frederickson, C. J.; Thompson,
R. B. J. Nutr. 2000, 130, 1471S-1483S. (c) Cuajungco, M. P.; Lees, G. J.
Neurobiol. Dis. 1997, 4, 137-169.
(4) (a) Formby, B.; Schmid-Formby, F.; Grodsky, G. M. Diabetes 1984, 33,
229-234. (b) Grodsky, G. M.; Schmid-Formby, F. Endocrinology 1985,
117, 704-710.
(5) For reviews see: (a) Kimura, E.; Aoki, S. BioMetals 2001, 14, 191-204.
(b) Burdette, S. C.; Lippard, S. J. Coord. Chem. ReV. 2001, 216, 333-
361.
several chemosensors with micromolar affinity for Zn2+ 9b
. These
(6) See references within Canzoniero, L. M. T.; Sensi, S. L.; Choi, D. W.
Neurobiol. Dis. 1997, 4, 275-279 and within ref 5a.
(7) (a) Walkup, G. K.; Burdette, S. C.; Lippard, S. J.; Tsien, R. Y. J. Am.
Chem. Soc. 2000, 122, 5644-5645. (b) Burdette, S. C.; Walkup, G. K.;
Spingler, B.; Tsien, R. Y.; Lippard, S. J. J. Am. Chem. Soc. 2001, 123,
7831-7841. (c) Burdette, S. C.; Frederickson, C. J.; Bu, W. M.; Lippard,
S. J. J. Am. Chem. Soc. 2003, 125, 1778-1787.
(8) (a) Hirano, T.; Kikuchi, K.; Urano, Y.; Higuchi, T.; Nagano, T. J. Am.
Chem. Soc. 2000, 122, 12 399-12 400. (b) Hirano, T.; Kikuchi, K.; Urano,
Y.; Nagano, T. J. Am. Chem. Soc. 2002, 124, 6555-6562. (c) Ueno, S.;
Tsukamoto, M.; Hirano, T.; Kikuchi, K.; Yamada, M. K.; Nishiyama, N.;
Nagano, T.; Matsuki, N.; Ikegaya, Y. J. Cell Biol. 2002, 158, 215-220.
(9) (a) Gee, K. R.; Zhou, Z.-L.; Qian, W.-J.; Kennedy, R. J. Am. Chem. Soc.
2002, 124, 776-778. (b) Gee, K. R.; Zhou, Z.-L.; Ton-That, D.; Sensi, S.
L.; Weiss, J. H. Cell Calcium 2002, 31, 245-251. (c) Qian, W.-J.; Gee,
K. R.; Kennedy, R. T. Anal. Chem. 2003, 75, 3136-3143.
(10) (a) Fierke, C. A.; Thompson, R. B. BioMetals 2001, 14, 205-222. (b)
Thompson, R. B.; Peterson, D.; Mahoney, W.; Cramer, M.; Maliwal, B.
P.; Suh, S. W.; Frederickson, C.; Fierke, C.; Herman, P. J. Neurosci.
Methods 2002, 118, 63-75.
(11) Maruyama, S.; Kikuchi, K.; Hirano, T.; Urano, Y.; Nagano, T. J. Am. Chem.
Soc. 2002, 124, 10 650-10 651.
(12) Thompson, R. B.; Cramer, M. L.; Bozym, R.; Fierke, C. A. J. Biomed.
Optics 2002, 7, 555-560.
(13) (a) Walkup, G. K.; Imperiali, B. J. Am. Chem. Soc. 1996, 118, 3053-
3054. (b) Walkup, G. K.; Imperiali, B. J. Am. Chem. Soc. 1997, 119, 3443-
3450.
(14) Walkup, G. K.; Imperiali, B. J. Org. Chem. 1998, 63, 6727-6731.
(15) Jotterand, N.; Pearce, D. A.; Imperiali, B. J. Org. Chem. 2001, 66, 3224-
3228.
(16) Koike, T.; Abe, T.; Takahashi, M.; Ohtani, K.; Kimura, E.; Shiro, M. J.
Chem. Soc., Dalton Trans., 2002, 1764-1768.
9
10.1021/ja0355980 CCC: $25.00 © 2003 American Chemical Society
J. AM. CHEM. SOC. 2003, 125, 10591-10597
10591