Weinheim, 2001; L. Fabbrizzi, M. Licchelli and P. Pallavicini, Acc.
Chem. Res., 1999, 32, 846; T. R. Kelly, H. de Silva and R. A. Silva,
Nature, 1999, 401, 150; N. Koumura, R. W. J. Zijistra, R. A. van
Delden, N. Harada and B. L. Feringa, Nature, 1999, 401, 152;
D. A. Leigh, J. K. Y. Wong, F. Dehez and F. Zerbetto, Nature, 2003,
424, 174; M. C. Jimenez-Molero, C. O. Dietrich-Buchecker and
J.-P. Sauvage, Chem. Commun., 2003, 1613; E. Katz,
O. Lioubashevsky and I. Wilner, J. Am. Chem. Soc., 2004, 126,
15520; A. Harada, Acc. Chem. Res., 2001, 34, 456; J.-P. Sauvage, Chem.
Commun., 2005, 1507.
5 I. Poleschak, J.-M. Kern and J.-P. Sauvage, Chem. Commun., 2004, 474
and references.
6 H. Fukumi and H. Kurihara, Heterocycles, 1978, 9, 1197.
7 A. F. Littke, C. Dai and G. C. Fu, J. Am. Chem. Soc., 2000, 122, 4020.
8 A. Jutand and A. Mosleh, J. Org. Chem., 1997, 62, 261.
Science Foundation. We also thank Dr A. De Cian for the
resolution of the X-ray structure (17).
Notes and references
{ Crystal structure analysis of 17: C96H72F12FeN6O6P2, M = 1751.39,
˚
monoclinic, a = 15.4180(3), b = 34.4150(6), c = 17.0120(4) A, b =
3
˚
116.3621(8)u, V = 8088.0(3) A , T = 173(2) K, space group P21/n, Z = 4,
m(Mo Ka) = 0.316 mm21, 45635 collected reflections, 23640 independent
reflections [R(int) = 0.048], final R indices R1 = 0.052, wR2 = 0.1261.
CCDC 283554. For crystallographic data in CIF or other electronic format
see DOI: 10.1039/b513222c.
1 G. R. Newkome, S. Pappalardo, V. K. Gupta and F. R. Fronczek,
J. Org. Chem., 1983, 48, 4848; C. J. Chandler, L. W. Deady, J. A. Reiss
and V. Tzimos, J. Heterocycl. Chem., 1982, 19, 1017; L.-Y. Chung,
E. C. Constable, M. S. Khan, J. Lewis, P. R. Raithby and M. D. Vargas,
J. Chem. Soc., Chem. Commun., 1984, 1425; E. Buhleier, W. Wehner
and F. Vo¨gtle, Chem. Ber., 1978, 111, 200.
9 Stannane 12 is obtained in two steps: commercially available 4-bromo-
[1,19-biphenyl]-4-ol is reacted with methyl iodide to afford 4-bromo-
49-methoxybiphenyl. The latter is converted to the stannane using
n-butyllithium and tributyltin chloride.
10 J. K. Stille, Angew. Chem., Int. Ed. Engl., 1986, 25, 508.
11 Characterisations of the new compounds. 7: 1H-NMR (CD2Cl2,
300 MHz): d = 9.42 (s, 2H; H1), 8.94 (s, 2H; H4), 7.96 (d, 3J =
8.2 Hz, 2H; H5), 7.74 (t, 3J = 8.2 Hz, 2H; H6), 7.53 (d, 3J = 8.2 Hz, 2H;
H7), 7.52 (d, 3J = 8.8 Hz, 4H; Ha), 7.09 (d, 3J = 8.8 Hz, 4H; Hb), 3.91 (s,
6H; Hc) ppm. ES-MS: m/z = 469.1907 [7 + H]+ (calculated 469.1911 for
C32H25N2O2). 10: 1H-NMR (CD2Cl2, 400 MHz, COSY-ROESY): d =
9.38 (s, 2H; H1), 8.37 (s, 2H; H4), 7.94 (d, 3J = 8.4 Hz, 2H; H5), 7.76 (t,
3J = 8.2 Hz, 2H; H6), 7.58 (d, 3J = 8.3 Hz, 2H; H7), 7.46 (d, 3J = 8.8 Hz,
4H; Ha), 7.16 (d, 3J = 8.9 Hz, 4H; Ha9), 7.08 (d, 3J = 8.8 Hz, 4H; Hb),
6.81 (d, 3J = 9.0 Hz, 4H; Hb9), 4.26 (t, 3J = 6.3 Hz, 4H; Ha), 3.99 (t, 3J =
6.2 Hz, 4H; Hd), 1.99 (m, 8H; Hb,c), 1.59 (s, 6H; Hc9) ppm. ES-MS:
m/z = 777.3761 [10 + H]+ (calculated 777.3687 for C53H49N2O4). 16:
1H-NMR (CDCl3/CF3COOD 5%, 300 MHz): d = 9.72 (s, 2H; H1),
9.07 (s, 2H; H4), 8.35 (d, 3J = 5.1 Hz, 4H; H5,7), 8.12 (t, 3J = 5.1 Hz, 2H;
H6), 7.83 (d, 3J = 8.4 Hz, 4H; Ha), 7.67 (d, 3J = 8.7 Hz, 4H; Hc), 7.60 (d,
2 C. O. Dietrich-Buchecker, J.-P. Sauvage and J.-P. Kintzinger,
Tetrahedron Lett., 1983, 24, 5095; C. O. Dietrich-Buchecker,
J.-P. Sauvage and J.-M. Kern, J. Am. Chem. Soc., 1984, 106, 3043;
C. O. Dietrich-Buchecker and J.-P. Sauvage, Tetrahedron, 1990, 46, 503;
J.-C. Chambron, C. O. Dietrich-Buchecker and J.-P. Sauvage,
Comprehensive Supramolecular Chemistry, (ed.: J. L. Atwood, J. E. D.
Davies, D. D. MacNicol, F. Vo¨gtle, J.-M. Lehn, J.-P. Sauvage, M. W.
Hosseini), Pergamon, Oxford, 1996, vol. 9, p. 43; C. O. Dietrich-
Bucheker and J.-P. Sauvage, Chem. Rev., 1987, 87, 795.
3 J.-C. Chambron, J.-P. Collin, V. Heitz, D. Jouvenot, J.-M. Kern,
P. Mobian, D. Pomeranc and J.-P. Sauvage, Eur. J. Org. Chem., 2004,
1627; D. Pomeranc, D. Jouvenot, J.-C. Chambron, J.-P. Collin, V. Heitz
and J.-P. Sauvage, Chem.-Eur. J., 2003, 9, 4247; P. Mobian, J.-M. Kern
and J.-P. Sauvage, Angew. Chem., Int. Ed., 2004, 43, 2392; P. Mobian,
J.-M. Kern and J.-P. Sauvage, Helv. Chim. Acta, 2003, 86, 4195;
P. Mobian, J.-M. Kern and J.-P. Sauvage, J. Am. Chem. Soc., 2003, 125,
2016.
3
3J = 8.4 Hz, 4H; Hb), 7.07 (d, J = 8.7 Hz, 4H; Hd), 3.93 (s, 6H; He)
ppm. ES-MS: m/z = 621.2529 [16 + H]+ (calculated 621.2537 for
C44H33N2O2). 17: 1H-NMR (CD2Cl2, 300 MHz): d = 8.89 (s, 6H; H1),
8.10 (d, 3J = 8.4 Hz, 6H; H5), 7.87 (s, 6H; H4), 7.84 (t, 3J = 8.4 Hz, 6H;
H6), 7.45 (d, 3J = 7.3 Hz, 6H; H7), 6.62 (d, 3J = 8.8 Hz, 12H; Ha), 6.31 (d,
3J = 8.8 Hz, 12H; Hb), 3.58 (s, 18H; Hc) ppm. ES-MS: m/z = 730.2431
[17]2+ (calculated 730.2428 for C96H72FeN6O6).
4 V. Balzani, M. Venturi and A. Credi, Molecular Devices and Machines,
Wiley-VCH, Weinheim, 2003; J.-P. Sauvage, Molecular Machines and
Motors, Structure & Bonding, vol. 99, Springer, Berlin, Heidelberg, 2001;
V. Balzani, A. Credi, F. M. Raymo and F. J. Stoddart, Angew. Chem.,
Int. Ed., 2000, 39, 3348; B. L. Feringa, Molecular Switches, Wiley-VCH,
This journal is ß The Royal Society of Chemistry 2006
Chem. Commun., 2006, 171–173 | 173