V. Jayaprakash et al. / Bioorg. Med. Chem. Lett. 18 (2008) 6362–6368
6367
Table 5
MAO-B inhibitory and antitubercular activity of compounds 11–17.
b
b
b
Compounda
IC50 (
l
M) Preincubation 60 mina
MAO inhibitory selectivitya
Compound
IC50
(l
M)
IC50GAST-D-Fe/IC50GAST-D
GAST-D
GAST-D-Fe
11
12
13
14
15
16
17
19.45 1.02
35.55 3.10
48.60 3.80
40.78 3.66
41.10 3.50
37.70 3.05
46.12 3.70
Selective for MAO-B
Selective for MAO-B
Selective for MAO-B
Selective for MAO-B
Selective for MAO-B
Selective for MAO-B
Selective for MAO-B
32
30
31
10
15
12
17
8
24
500
28
>500
27
417 83
1
125
42
500
167 42
>500
208 42
>500
0
4
0
16
2
1
6
nd
8
6
0
5
3
>1
a
Table 2 in this article.
Reproduced from Ref. 1.
b
A was positioned in aromatic cage, which is favored by the hydro-
gen bonding interaction between hydroxyl oxygen of ring B and
hydroxyl hydrogen of TYR398.
Supplementary data
Supplementary data associated with this article can be found, in
Two unsubstituted aromatic rings were found to be conve-
niently accommodated in aromatic cage of MAO-B (compound
8 and 9), while a ring with substitution drastically reduces esti-
mated binding free energy (compound 7). When all the three
rings were substituted only one ring was accommodated in
aromatic cage of MAO-B, which forces other two ring to be
accommodated in the narrow cavity leading to poor estimated
binding free energy. In other words these factors make them
selective towards MAO-A. Only compounds 8, 9 and 11 were
found to be non-selective towards human MAO-A and B with
good estimated binding free energy on both the isoforms, while
all other compounds studied were found to be selective towards
human MAO-A. Observations from docking studies comply with
the statement of De Colibus et al. that ‘‘results from investigation
of one mammalian form of MAO cannot be unambiguously
extrapolated to other mammalian forms.36
References and notes
1. Stirrett, K. L.; Ferreras, J. A.; Venkatesan, J.; Sinha, B. N.; Ren, T.; Quadri, L. E. N.
Bioorg. Med. Chem. Lett. 2008, 18, 2662.
2. Velezheva, V. S.; Brennan, P. J.; Marshakov, V. Y.; Gusev, D. V.; Lisichkina, I. N.;
Peregudov, A. S.; Tchemousova, L. N.; Smimova, T. G.; Andreevskaya, S. N.;
Medvedev, A. E. J. Med. Chem. 2004, 47, 3455.
3. Reck, F.; Zhou, F.; Girardot, M.; Kern, G.; Evermann, C. J.; Hales, N. J.; Ramsay, R.
R.; Gravestok, M. B. J. Med. Chem. 2005, 48, 499.
4. French, G. J. Anti micro. Chem. other. 2003, 51S2, ii45.
5. Parmar, S. S.; Pandey, B. R.; Dwivedi, C.; Harbison, R. D. J. Pharm. Sci. 1974, 63,
1152.
6. Soni, N.; Pande, K.; Kalsi, R.; Gupta, T. K.; Parmar, S. S.; Barthwal, J. P. Res.
Commun. Chem. Pathol. Pharm. 1987, 56, 129.
7. Bilgin, A. A.; Palaska, E.; Sunal, R. Arzneimittelforschung 1993, 43, 1041.
8. Palaska, E.; Erol, D.; Demirdamar, R. Eur. J. Med. Chem. 1996, 31, 43.
9. Palaska, E.; Aytemir, M.; Uzbay, I. T.; Erol, D. Eur. J. Med. Chem. 2001, 36,
539.
Compound 11 has higher estimated binding free energy than
Linezolid on both the isoforms of human MAO. The compound 11
was a novel antitubercular lead in spite of its very low potency
compared with standard, Rifampicin, used in our study. Novelty
of the compound 11 compared with antitubercular pyrazolines
reported earlier30–32 is its increased potency in iron limiting condi-
tions compared with iron fed condition. This suggests its inhibitory
action on mycobacterial iron metabolism and will greatly help in
identifying a new potential target, which is needed in addressing
global threats due to multi-drug resistant and emerging exten-
sively drug resistant Tuberculosis. Further design and development
of this class of molecules as antitubercular agents should consider
its potential human MAO inhibitory activity as a major problem to
be addressed.
It is interesting to note that the potent antitubercular mole-
cules in this series were found to be selective inhibitors of rat
MAO-B (Table 5.). Once again one cannot unambiguously extrap-
olate it to mycobacterial MAO inhibition for its antitubercular
activity. At the same time under iron limiting condition expres-
sion of oxidation enzymes required for metabolism of carbohy-
drates in mycobacterium tuberculosis grown in culture
medium and oxidation enzymes required for metabolism of fatty
acid in mycobacterium tuberculosis grown in macrophages were
reported to be elevated.37–39 Possibility of these enzymes as a
target for this class of molecules should also be investigated,
since this may provide us a new potential target for antitubercu-
lar drug design.
10. Rajendra Prasad, Y.; Lakshmana Rao, A.; Prasoona, L.; Murali, K.; Ravi Kumar, P.
Bioorg. Med. Chem. Lett. 2005, 15, 5030.
11. Ruhog˘lu, O.; Ozdemir, Z.; Calißs, U.; Gümüßsel, B.; Bilgin, A. A.
Arzneimittelforschung 2005, 55, 431.
12. Ozdemir, Z.; Kandilci, H. B.; Gümüsßel, B.; Calißs, U.; Bilgin, A. A. Eur. J. Med. Chem.
2007, 42, 373.
13. Manna, F.; Chimenti, F.; Bolasco, A.; Bizzarri, B.; Befani, O.; Pietrangeli, P.;
Mondovı‘, B.; Turini, P. J. Enzyme Inhib. 1998, 13, 207.
14. Gökhan, N.; Yesßilada, A.; Uçar, G.; Erol, K.; Bilgin, A. A. Arch. Pharm. Pharm. Med.
Chem. 2003, 336, 362.
15. Chimenti, F.; Bolasco, A.; Manna, F.; Secci, D.; Chimenti, P.; Befani, O.; Turini,
P.; Giovannini, V.; Mondovi, B.; Cirilli, R.; La Torre, F. J. Med. Chem. 2004, 47,
2071.
16. Ucar, G.; Gokhan, N.; Yesilada, A.; Bilgin, A. A. Neurosci. Lett. 2005, 382, 327.
17. Chimenti, F.; Maccioni, E.; Secci, D.; Bolasco, A.; Chimenti, P.; Granese, A.;
Befani, O.; Turini, P.; Alcaro, S.; Ortuso, F.; Cirilli, R.; La Torre, F.; Cardia, M. C.;
Distinto, S. J. Med. Chem. 2005, 48, 7113.
18. Chimenti, F.; Bolasco, A.; Manna, F.; Secci, D.; Chimenti, P.; Granese, A.; Befani,
O.; Turini, P.; Cirilli, R.; La Torre, F.; Alcaro, S.; Ortuso, F.; Langer, T. Curr. Med.
Chem. 2006, 13, 1411.
19. Yabanoglu, S.; Ucar, G.; Gokhan, N.; Salgin, U.; Yesilada, A.; Bilgin, A. A. J. Neural.
Transm. 2007, 114, 769.
20. Gokhan, N.; Yabanoglu, S.; Kupeli, E.; Salgın, U.; Ozgen, O.; Ucar, G.; Yesilada,
E.; Kendi, E.; Yesilada, E.; Bilgin, A. A. Bioorg. Med. Chem. 2007, 15, 5775.
21. Chimenti, F.; Fioravanti, R.; Bolasco, A.; Manna, F.; Chimenti, P.; Secci, D.;
Befani, O.; Turini, P.; Ortuso, F.; Alcaro, S. J. Med. Chem. 2007, 50, 425.
22. Chimenti, F.; Maccioni, E.; Secci, D.; Bolasco, A.; Chimenti, P.; Granese, A.;
Befani, O.; Turini, P.; Alcaro, S.; Ortuso, F.; Cardia, M. C.; Distino, S. J. Med. Chem.
2007, 50, 707.
23. Sharma, T. C.; Bokadia, M. M.; Reddy, N. J. Indian J. Chem., Sect. B 1980, 19,
228.
24. Manish, S.; Pankaj, P.; Sushil, K.; Hansa, P. Indian J. Chem., Sect. B. 1996, 35,
1282.
25. Desai, J. K.; Ankhiwala, M. D. Indian J. Heterocycl. Chem. 1996, 6, 115.
26. Raghuwanshi, P. B.; Doshi, A. G. J. Indian Chem. Soc. 1997, 74, 421.
27. Naik, K. M.; Naik, H. B. Asian J. Chem. 2000, 12, 1330.
28. Shinde, S.; Jadhav, W.; Pawarb, R.; Bhusareb, S. J. Chin. Chem. Soc. 2004, 51,
775.
29. Turan-Zitounia, G.; Ozdemira, A.; Guven, K. Arch. Pharm. Chem. Life Sci. 2005,
338, 1.
30. Shaharyar, M.; Siddique, A. A.; Ashraf Ali, M.; Sriram, D.; Yogeeswari, P. Bioorg.
Acknowledgment
We are grateful to the Sophisticated Analytical Instrument
Facility (CDRI, Lucknow, India) for providing spectral data.
Med. Chem. Lett. 2006, 16, 3947.