K. Iwanami et al. / Tetrahedron Letters 46 (2005) 7487–7490
Table 4. Synthesis of various cyanohydrin esters from carbonyl compoundsa
7489
TMSCN
(R''CO)2O
O
NC
R
OCOR''
R'
FeCl3
CH3NO2, 0 oC, 30 min
R
R'
Entry
Carbonyl compound
R00
Et
Temperatures of the second step/°C
Time of the second step/h
Yieldb/%
1
2
3
4
5c
6
7
8
9c
PhCHO
PhCHO
PhCHO
PhCHO
rt
rt
rt
60
60
60
60
rt
3
3
3
2
12
3
3
12
9
95
94
89
89
77
83
82
87
68
i-Pr
CH3CH@CH
t-Bu
Ph
t-Bu
Ph
t-Bu
Ph
PhCHO
PhCH2CH2CHO
PhCH2CH2CHO
Cyclopentanone
Cyclopentanone
rt
a Molar ratio of carbonyl compound/TMSCN/acid anhydride/FeCl3 = 1:1.2:1.5:0.05.
b Isolated yield of purified product.
c 1.1 equiv of Bz2O was used.
OTMS
CN
(3) a broad range of aldehydes and ketones can be ap-
plied, (4) mild reaction conditions, and (5) experimental
convenience. Further investigations to broaden the
scope and synthetic applications of this efficient cyana-
tion are under way in our laboratory.
TMSCN (1.2 equiv.)
PhCHO
Ph
FeCl3 (5 mol%)
CH3NO2, 0 oC, 30 min
quant.
Scheme 3. Cyanosilylation of benzaldehyde catalyzed by iron(III)
chloride.
References and notes
1. (a) Gregory, R. J. H. Chem. Rev. 1999, 3649; (b) Brunel,
J.-M.; Holmes, I. P. Angew. Chem., Int. Ed. 2004, 43, 2752;
(c) Chen, F.-X.; Feng, X. Synlett 2005, 892; (d) Achard, T.
R. J.; Clutterbuck, L. A.; North, M. Synlett 2005, 1828.
2. (a) Evans, D. A.; Truesdale, L. K.; Carroll, G. L. J. Chem.
Soc., Chem. Commun. 1973, 55; (b) Evans, D. A.;
Truesdale, L. K. Tetrahedron Lett. 1973, 14, 4929; (c)
Kobayashi, S.; Tsuchiya, Y.; Mukaiyama, T. Chem. Lett.
1991, 541; (d) Golinski, M.; Brock, C. P.; Watt, D. S. J.
Org. Chem. 1993, 58, 159; (e) Yang, Y.; Wang, D. Synlett
1997, 1379; (f) Saravanan, P.; Anand, R. V.; Singh, V. K.
Tetrahedron Lett. 1998, 39, 3823; (g) Bandini, M.; Cozzi,
P. G.; Melchiorre, P.; Umani-Ronchi, A. Tetrahedron
Lett. 2001, 42, 3041; (h) Azizi, N.; Saidi, M. R. Phosphorus
Sulfur Silicon Relat. Elem. 2003, 178, 2111.
OAc
Ac2O (1.5 equiv.)
OTMS
CN
Ph
CN
98%
FeCl3 (5 mol%)
Ph
CH3NO2, rt, 15 min
Scheme 4. Direct O-acetylation of cyanohydrin TMS ether catalyzed
by iron(III) chloride.
corresponding cyanohydrin pivaloates or benzoates
were also obtained in good to high yields (entries 4–9).
Concerning the reaction mechanism, when the reaction
of entry 1 in Table 3 was quenched after the completion
of the first step, the corresponding trimethylsilyl ether,
a-(trimethylsiloxy)phenylacetonitrile, was detected by
1H NMR analysis,17 as shown in Scheme 3. On the other
hand, when the isolated cyanohydrin TMS ether18 was
treated with 1.5 equiv of acetic anhydride in the presence
of 5 mol % of iron(III) chloride, the corresponding ace-
tate, a-(acetoxy)phenylacetonitrile, was obtained readily
in 98% yield (Scheme 4). These experimental results sug-
gest that the present cyanoacylation proceeds via cyano-
hydrin trimethylsilyl ether as an intermediate.
3. (a) Kobayashi, S.; Tsuchiya, Y.; Mukaiyama, T. Chem.
Lett. 1991, 537; (b) Tian, S.-K.; Deng, L. J. Am. Chem.
Soc. 2001, 123, 6195; (c) Tian, S.-K.; Hong, R.; Deng, L.
J. Am. Chem. Soc. 2003, 125, 9900; (d) Kurono, N.;
Yamaguchi, M.; Suzuki, K.; Ohkuma, T. J. Org. Chem.
2005, 70, 6530.
4. Zhou, H.; Chen, F.-X.; Qin, B.; Feng, X.; Zhang, G.
Synlett 2004, 1077.
5. Iwanami, K.; Oriyama, T. Chem. Lett. 2004, 33, 1324.
6. Other iron(III) chloride-catalyzed useful reactions of silyl-
substituted nucleophiles: (a) Watahiki, T.; Oriyama, T.
Tetrahedron Lett. 2002, 43, 8959; (b) Watahiki, T.;
Akabane, Y.; Mori, S.; Oriyama, T. Org. Lett. 2003, 5,
3045; (c) Iwanami, K.; Seo, H.; Tobita, Y.; Oriyama, T.
Synthesis 2005, 183; (d) Iwanami, K.; Yano, K.; Oriyama,
T. Synthesis, in press.
7. (a) McIntosh, J. M. Can. J. Chem. 1977, 55, 4200; (b)
Hiyama, T.; Oishi, H.; Saimoto, H. Tetrahedron Lett.
1985, 26, 2459; (c) Ohta, H.; Kimura, Y.; Sugano, Y.;
Sugai, T. Tetrahedron 1989, 45, 5469; (d) Lu, Y.; Miet, C.;
Kunesch, N.; Poisson, J. Tetrahedron: Asymmetry 1990, 1,
707; (e) Kawasaki, Y.; Fujii, A.; Nakano, Y.; Sakaguchi,
In conclusion, we have developed an efficient one-pot
synthesis of O-acyl protected cyanohydrins starting
from a variety of parent carbonyl compounds. The pres-
ent reaction has the following synthetic advantages: (1) a
catalytic amount of iron(III) chloride promotes both
cyanation and O-acylation, in contrast to the known
cyanation of carbonyl compounds, (2) various ester
types of a protecting group for the hydroxyl function
are obtained by using readily available acid anhydride,