C O M M U N I C A T I O N S
speculate that the orthogonal self-assembly of our hydrogelators
and surfactants is due to their different molecular architectures as
well as the in part different driving forces for self-assembly, that
is, hydrogen bonding and hydrophobic effects versus hydrophobic
effects alone, respectively. The straightforward design of 1,3,5-
trisamide-cyclohexane-based gelators and the thermoreversibility
and pH-sensitivity13 of the hydrogels make them ideal model
systems to investigate the factors controlling self-assembly and
phase separation in gelator-surfactant systems and employ them
as cytoskeleton mimics in liposomes.
Supporting Information Available: Experimental details on the
preparation and characterization of 1-3, and cryo-TEM (PDF). This
Figure 1. Cryo-TEM of a hydrogel of 1 (3.3 mM) in the presence of 33
mM of OG, that is, well above the cmc of OG. For a cryo-TEM of a gel
of 1 without surfactant, see the Supporting Information. The scale bar is
300 nm.
References
(1) (a) Hartgerink, J. D.; Beniash, E.; Stupp, S. I. Science 2001, 294, 1684-
1688. (b) Ikkala, O.; ten Brinke, G. Science 2002, 295, 2407-2409.
(2) (a) Ringsdorf, H.; Schlarb, B.; Venzmer J. Angew. Chem., Int. Ed. Engl.
1988, 27, 113-158. (b) Kato, T. Science 2002, 295, 2414-2418.
(3) (a) Creighton, T. E. Biochem. J. 1990, 270, 1-16. (b) Hill D. J.; Mio, M.
J.; Prince, R. B.; Hughes, T. S.; Moore, J. S. Chem. ReV. 2001, 101, 3893-
4011.
(4) Bates, F. S. Science 1991, 251, 898-905.
(5) (a) Cornils, B. Angew. Chem., Int. Ed. Engl. 1997, 36, 2057-2059. (b)
Krafft, M. P.; Giulieri, F.; Fontaine, P.; Goldmann, M. Langmuir 2001,
17, 6577-6584.
(6) (a) Terech, P.; Weiss, R. G. Chem. ReV. 1997, 97, 3133-3159. (b) van
Esch, J. H.; Feringa, B. L. Angew. Chem., Int. Ed. 2000, 39, 2263-2266.
Figure 2. Fluorescence intensity of ANS (2 × 10-5 mmol L-1) as a
function of the OG concentration without gelator (4), and in the presence
of 1 below the cgc (0.66 mM, 9), and above the cgc (2.46 mM, [; 4.92
mM, b). λex, 370 nm; λem, 490 nm; T ) 25 °C, in 50 mM NaCl. The pH
has been adjusted with HCl to a value of ∼3.5.
(7) (a) Newkome, G. R.; Baker, G. R.; Arai, S.; Saunders, M. J.; Russo, P.
S.; Theriot, K. J.; Moorefield, C. N.; Rogers, L. E.; Miller, J. E.; Lieux,
T. R.; Murray, M. E.; Phillips, B.; Pascal, L. J. Am. Chem. Soc. 1990,
112, 8458-8465. (b) Fuhrhop, J. H.; Helfrich, W. Chem. ReV. 1993, 93,
1565-1582. (c) Jokic, M.; Makarevic, J.; Zinic, M. J. Chem. Soc., Chem.
Commun. 1995, 1723-1724. (d) Shimizu, T.; Masuda, M. J. Am. Chem.
Soc. 1997, 119, 2812-2818. (e) Oda, R.; Huc, I.; Candau, S. J. Angew.
Chem., Int. Ed. 1998, 37, 2689-2691. (f) Menger, F. M.; Caran, K. L. J.
Am. Chem. Soc. 2000, 122, 11679-11691. (g) Estroff, L. A.; Hamilton,
A. D. Angew. Chem., Int. Ed. 2000, 39, 3447. (h) Maitra, U.; Mukho-
padhyay, S.; Sarkar, A.; Rao, P.; Indi, S. S. Angew. Chem., Int. Ed. 2001,
40, 2281. (i) Marmillon, C.; Gauffre, F.; Gulik-Krzywicki, T.; Loup, C.;
Caminade, A. M.; Majoral, J. P.; Vors, J. P.; Rump, E. Angew. Chem.,
Int. Ed. 2001, 40, 2626-2629. (j) Kobayashi, H.; Friggeri A.; Koumoto,
K.; Amaike, M.; Shinkai, S.; Reinhoudt, D. N. Org. Lett. 2002, 4, 1423-
1426. (k) Menger, F. M.; Peresypkin, A. V. J. Am. Chem. Soc. 2003,
125, 5340-5345.
(8) (a) Mieden-Gundert, G.; Klein, L.; Fischer, M.; Vogtle, F.; Heuze, K.;
Pozzo, J. L.; Vallier, M.; Fages, F. Angew. Chem., Int. Ed. 2001, 40,
3164-3166. (b) Gronwald, O.; Snip, E.; Shinkai, S. Curr. Opin. Colloid
Interface Sci. 2002, 7, 148-156.
(9) (a) Hanabusa, K.; Yamada, M.; Kimura, M.; Shirai, H. Angew. Chem.,
Int. Ed. Engl. 1996, 35, 1949-1951. (b) van Esch, J.; Schoonbeek, F.; de
Loos, M.; Kooijman, H.; Spek, A. L.; Kellogg, R. M.; Feringa, B. L.
Chem.-Eur. J. 1999, 5, 937-950.
It is an intriguing question whether the presence of a gel network
or free gelator molecules interferes with the formation of micelles
by the surfactants. To study micelle formation by the surfactants
in the presence of a fibrous gel network, we employed the well-
known fluorescence probe 8-anilino-1-naphthalenesulfonic acid
(ANS).16a ANS itself shows only a weak fluorescence in water,
and addition of gelator 1 below and above its cgc has no effect on
the fluorescence properties of ANS. Upon addition of OG above
the cmc, micelles are formed and ANS becomes incorporated in
the less polar micellar environment, resulting in a red-shift of the
emission wavelength to 490 nm and a strong increase of the
quantum yield (Figure 2). The fluorescent intensity shows an abrupt
increase at higher surfactant concentrations which marks the
formation of micelles, and the cmc value of 24 mM (graphically
determined from the intercept of the tangents) is in excellent
agreement with the reported cmc for OG.16c The cmc of OG does
not change by addition of gelator 1 below its cgc, and the cmc of
OG decreases only slightly to a value of 20-22 mM above the
cgc of 1 when the solutions have turned into hydrogels. The slight
decrease is most likely due to some association of the surfactant
molecules with the gel fibers, but the cmc of OG does not decrease
any further if the gelator concentration is increased, which makes
extensive association of OG with the gelator network highly
unlikely. It is therefore concluded that OG self-assembles into
micelles in the presence of a gel network formed by self-assembly
of gelator molecules of 1!
(10) (a) Yasuda, Y.; Iishi, E.; Inada, H.; Shirota, Y. Chem. Lett. 1996, 575-
576. (b) van Gorp, J. J.; Vekemans, J. A. J. M.; Meijer, E. W. J. Am.
Chem. Soc. 2002, 124, 14759-14769.
(11) (a) Fan, E. K.; Yang, J.; Geib, S. J.; Stoner, T. C.; Hopkins, M. D.;
Hamilton, A. D. J. Chem. Soc., Chem. Commun. 1995, 1251-1252. (b)
Hanabusa, K.; Kawakami, A.; Kimura, M.; Shirai, H. Chem. Lett. 1997,
191-192.
(12) A full report on the synthesis and gelation properties of 1,3,5-trisamide-
cyclohexane gelators is in preparation.
(13) Interestingly, reversible gelation and dissolution of water by 1 is observed
by changing the pH from 7 to 3.5 and back.
(14) Cgc at 25 °C for 1, 1.7 mM; 2, <3 mM; and 3, 1.3 mM; and TGS of gels
of 1, 73 °C (6.4 mM); 2, 104 °C (3.5 mM); and 3, 118 °C (1.7 mM).
(15) (a) Bellamy, L. J. The Infra-Red Spectra of Complex Molecules; Richard
Clay and Company Ltd.: Bungay, Suffolk, England, 1962. (b) Kiyonaka,
S.; Shinkai, S.; Hamachi, I. Chem.-Eur. J. 2003, 9, 976-983.
(16) (a) Preiv, A.; Zalipsky, S.; Cohen, R.; Barenholz, Y. Langmuir 2002, 18,
612-617. (b) Carnero Ruiz, C.; Aguiar, J. Langmuir 2000, 16, 7946-
7953. (c) Mukerjee, P.; Chan, C. C. Langmuir 2002, 18, 5375-5381.
The results presented here show that self-assembly of 1 and of
OG are orthogonal processes, leading to the independent formation
of a fibrillar network with encapsulated micelles, and the compa-
rable gelation behavior and molecular architecture with 1 form a
clear indication that 2 and 3 with surfactants behave similarly. We
JA036954H
9
J. AM. CHEM. SOC. VOL. 125, NO. 47, 2003 14253