The UV-vis and emission spectra of the polymers 3 and 5 in
chloroform solution and in thin films are shown in Fig. 2. Their
optical properties are similar to each other and in accord with
the spectroscopic data recorded for dialkyl-PPEs1 where
lmax (solution) is 388 nm and lmax (thin film) is 439 nm. The silyloxy
substituent in 5 seems to have a slight electron withdrawing
effect. As a consequence, lmax (absorption) is somewhat blue-
shifted in 5. The optical properties of 3 in the solid state are
unusual. As-spun films show a lmax (absorption) of 436 nm,
typical of dialkyl-PPEs. Upon annealing (4 h, 100 °C) these thin
films, their absorption changes back to lmax = 406 nm, which
is similar to the absorption of 3 recorded in chloroform (Fig. 2).
In addition, the absorption loses almost all structure. The
emission of the films changes much less upon annealing and
only a small shift from 519 to 504 nm is observed when going
from the pristine to the annealed films. The fluorescence
intensity does not change visibly upon annealing. At the same
time the annealed thin films of 3 are now insoluble in common
organic solvents.
Fig. 3 X-Ray diffraction of different polyester substituted PPEs. Bottom
curve: gel phase. Middle curve: pristine powder. Top curve: annealed
powder.
We assume that the insolubility of the polymers upon
annealing is due to an increased order in the polyester side
chain. Powder X-ray diffraction (Fig. 3) shows that the intensity
of the polyester diffraction peaks at 5.6, 4.14, 3.74, and 3.0 Å
increases upon annealing, while a diffuse intensity of diffraction
that is visible as a hump at 2-q = 20–22° disappears during the
annealing process. This broad diffraction peak at 2-q = 20–22°
is typical for the p–p-stacking of the PPEs and is the most
intense diffraction in these materials.13,14 The annealing
increases the ordering of the polyester side chains, but it seems
to decrease the ordering of the PPE main chain, i.e. in the
competition of main chain and side chains, the side chains win
and lead to a twist and a gross disorder of the PPE main chain
in the solid. In the powder diffraction of the annealed sample
there are no signs of the diffraction of the main chain left.
In conclusion we have made two new dialkyl-PPE derivatives
3 and 5 with a macromolecular polyester substituent and
triisopropylsilyloxy side groups. The attachment of the polyes-
ter side chain to the PPE leads to a graft copolymer that shows
an unusual chromic behavior, in that its lmax (UV-vis) blue-
shifts upon annealing. In future we will investigate the structural
pecularities of both 3 and 5 further.
The authors thank the Department of Energy and the National
Science Foundation (CHE 0138-659, PI Bunz) for funding. UB
is Camille Dreyfus Teacher-Scholar (2000–2004). We thank Dr
Catherine Stitzer and Prof. Dr H.-C. zur Loye for the powder
diffraction spectra.
Notes and references
1 U. H. F. Bunz, Chem. Rev., 2000, 100, 1605; U. H. F. Bunz, Acc. Chem.
Res., 2001, 34, 998.
2 C. E. Halkyard, M. E. Rampey, L. Kloppenburg, S. L. Studer Martinez
and U. H. F. Bunz, Macromolecules, 1998, 31, 8655; T. Miteva, L.
Palmer, L. Kloppenburg, D. Neher and U. H. F. Bunz, Macromolecules,
2000, 33, 652.
3 J. Kim and T. M. Swager, Nature, 2001, 411, 1030.
4 Q. Zhou and T. M. Swager, J. Am. Chem. Soc., 1995, 117, 12593; J. S.
Yang and T. M. Swager, J. Am. Chem. Soc., 1998, 120, 11864; T. M.
Swager, Acc. Chem. Res., 1998, 31, 201.
5 A. Montali, P. Smith and C. Weder, Synth. Met., 1998, 97, 123; C.
Schmitz, P. Posch, M. Thelakkat, H. W. Schmidt, A. Montali, K.
Feldman, P. Smith and C. Weder, Adv. Funct. Mater., 2001, 11, 41; A.
Kokil, I. Shiyanovskaya, K. D. Singer and C. Weder, J. Am. Chem. Soc.,
2002, 124, 9978; C. Weder, C. Sarwa, A. Montali, G. Bastiaansen and
P. Smith, Science, 1998, 279, 835.
6 N. G. Pschirer, T. Miteva, U. Evans, R. S. Roberts, A. R. Marshall, D.
Neher, M. L. Myrick and U. H. F. Bunz, Chem. Mater., 2001, 13,
2691.
7 T. Sato, D. L. Jiang and T. Aida, J. Am. Chem. Soc., 1999, 121,
10658.
8 J. N. Wilson, W. Steffen, T. G. McKenzie, G. Lieser, M. Oda, D. Neher
and U. H. F. Bunz, J. Am. Chem. Soc., 2002, 124, 6830.
9 S. Zahn and T. M. Swager, Angew. Chem., Int. Ed., 2002, 41, 4225.
10 C. Y. Tan, M. R. Pinto and K. S. Schanze, Chem. Commun., 2002, 446;
N. DiCesare, M. R. Pinto, K. S. Schanze and J. R. Lakowicz, Langmuir,
2002, 18, 7785.
11 C. G. Bangcuyo, J. M. Ellsworth, U. Evans, M. L. Myrick and U. H. F.
Bunz, Macromolecules, 2003, 36, 546; B. Erdogan, J. N. Wilson and U.
H. F. Bunz, Macromolecules, 2002, 35, 7863; C. G. Bangcuyo, U.
Evans, M. L. Myrick and U. H. F. Bunz, Macromolecules, 2001, 34,
7592.
12 J. N. Wilson, S. M. Waybright, K. McAlpine and U. H. F. Bunz,
Macromolecules, 2002, 35, 3799.
13 U. H. F. Bunz, V. Enkelmann, L. Kloppenburg, D. Jones, K. D. Shimizu,
J. B. Claridge, H.-C. zur Loye and G. Lieser, Chem. Mater., 1999, 11,
1416; L. Kloppenburg, D. Jones, J. B. Claridge, H.-C. zur Loye and U.
H. F. Bunz, Macromolecules, 1999, 32, 4460.
Fig. 2 UV-vis and emission spectra of 3 and 5. Top: spectra of 3; bottom:
spectra of 5.
14 D. Ofer, T. M. Swager and M. S. Wrighton, Chem. Mater., 1995, 7,
418.
CHEM. COMMUN., 2003, 1624–1625
1625