J. CHEM. RESEARCH (S), 1998 559
Table 1 General equations and parameters for calculation of activity coefficients by use of mean spherical approximation
General equations4,5,15
zi2
2zi
(1+
π
2
4
2
Pn Pn
i
i
i
ln el = –
–
–
Electrostatic contribution: Debye–Hückel type
Σ
i
(1+
)
)
(1+
)
i
4πΣ
4
24
i
i
i
i
i
3 X0 + 3 2X1 + 3 i X
3
3X1 X2 + 9/2 2X22
+ 3 3X2
i
3
i
i
i
i
2
Hard-sphere contribution: Percus–Yevick equation
ln hs = – ln
i
+
+
+
2
3
Common parameters for all systems
Specific parameters for the studied system
Electric charges (zi) defined by the model
1/2
i zi2
n
4πe 2
kT
2 Σ
2
=
2
=
2
i=1
(1+
)
i
Numerical densities (
)
experimental conditions: constant ionic medium
i zi
i
π
6
1
Ω
i
k
=
=
= 6.0225 x 10–4 (2 CNaClO
)
Xk
Pn
Σ
Σ (1+
i
=
+
ClO–
4
i
)
Σ
i
Na+
i
i
i
4
i
(k = 0,1,2,3)
3
–
(ClO4)=4.79 Å (Pauling diameter)
+
π
6
π
2
i
i
3
Ionic diameters (
)
electrolyte ions16
reactive ions17
= 1–
Ω = 1 +
Σ
Σ
i
i
i
(Na )=2.18–0.728CNaCl +0.0919C2NaClO
i
(1+
)
i
i
4
4
([Fe(CN6)]3–)=8.8 Å
(C6H7O6)=7.0 Å
e: electron charge
k: Boltzman constant
T: temperature (K)
constants
(AC‡)=11.1 Å (optimized)
ε
: dielectric constant
Table 2 Dependence of log k on ionic strength according
to several specific interactions models and the mean
spherical approximationa
Figure 1 shows the experimental data and the correspond-
ing plots for the dierent ®tting equations of Table 2. As
can be seen, a highly satisfactory ®t is obtained when MSA
is applied taking the diameters given in Table 1. All these
diameters were taken from the literature16,17 except that of
the activate complex (AC%), which was optimized. All
approaches, except the Debye±Huckel approach, seem to ®t
the experimental results satisfactorily.
Equation type
log k
obs
A
I
C1 + 7
C2 + 7
Debye–Hückel
1 + 2.5
I
A
I
+ BI
Debye–Hückel +
linear term
1 + 2.17
I
MESV thanks Xunta de Galicia for ®nancial support
received through Project XUGA 10310B97.
I
2
γ
+
C3 + A'
In(1 + 1.2
I) + B'I
f
(Pitzer) + linear
1.2
(
(
1 + 1.2
I
term
Received, 6th March 1998; Accepted, 27th May 1998
Paper E/8/01853G
el
C4 + logγ AHhs + (log γ Fe(CN)63–
2
References
hs
+ log γ Fe(CN)63–
)
Mean spherical
approxim ation
1 S. P. Mushran, M. C. Agrawal, R. M. Mehrotra and R. Sanehi,
J. Chem. Soc., Dalton Trans., 1974, 1960.
2 E. Pelizzeti, E. Mentasti and E. Pramauro, Inorg. Chem., 1978,
17, 1181.
3 B. Bansch, P. Martõnez, P. Zuluaga, D. Uribe and R. van
Eldick, Inorg. Chem., 1991, 30, 4555.
– (log γ AC‡el+ log γ AC‡hs
)
aC1±C4 are fitting parameters associated with the respective
models.
4 K. W. Watkins and J. A. Olson, J. Chem. Educ., 1980, 57, 158.
5 L. J. Martins and J. Barbosa da Costa, J. Chem. Educ., 1988,
65, 176.
6 J. A. Nobrega and F. R. P. Rocha, J. Chem. Educ., 1997, 74,
560.
7 R. J. Smile, in Physical Chemistry. Methods, Techniques and
Experiments, Saunders College Pub., Philadelphia, PA, 1990,
630.
8 K. S. Pitzer, in Activity Coecients in Electrolyte Solution, ed.
K. S. Pitzer, CRC Press, Boca Raton, FL, 1991, 2nd edn., ch. 3.
9 M. E. Sastre de Vicente, Curr. Top. Solution Chem., 1997, 2, 157.
10 T. Vilarino and M. E. Sastre de Vicente, J. Phys. Chem., 1996,
100, 16378.
11 T. Vilarino, S. Fiol, I. Brandariz, X. L. Armesto and M. E.
Sastre de Vicente, J. Chem. Soc., Faraday Trans., 1997, 93, 413.
12 T. Vilarino and M. E. Sastre de Vicente, J. Solution Chem.,
1997, 26, 833.
13 M. E. Sastre de Vicente, T. Vilarino and I. Brandariz, review in
Recent Research Developments in Physical Chemistry, 1998, in
press.
14 A. Haim and M. J. Akhtar, Inorg. Chem., 1988, 27, 1608.
15 H. L. Friedman, in A Course in Statistical Mechanics, Prentice
Hall, Englewood Clis, NJ, 1985, ch. 7.
Fig. 1 Ionic strength dependence of log kobs for the oxidation
of L-ascorbic acid by hexacyanoferrate(III) according to
equations given in Table 2: (ÐÐ) MSA; (±±±) Debye±Huckel;
(- - - - - -) Debye±Huckel linear term; (....) f g(Pitzer) linear
3
4
term. Experimental conditions: [Fe(CN)6 ] 2.49Â 10 M,
3
[H2A]t 4.97Â 10 M, pH<2 and T 25 8C
16 T. Sun, J. L. Lenard and A. Teja, J. Phys. Chem., 1994, 98,
6870.
17 B. Bausch, P. Martinez, J. Zuluaga, D. Uribe and R. van Eldin,
Z. Phys. Chem., 1991, 170, 59.
and the optimization of the diameters used. Details of the
application of the method to studies of acid±base equilibria
can be found in refs. 10±13.