ACS Medicinal Chemistry Letters
Page 6 of 10
(20) Shao, H.; Shi, S.; Foley, D. W.; Lam, F.; Abbas, A. Y.; Liu, X.;
human epidermal growth factor receptor 2, HTVS; high
throughput virtual screening, mTOR; mammalian target of
Huang, S.; Jiang, X.; Baharin, N.; Fischer, P. M.; Wang, S. Synthesis,
structure–activity relationship and biological evaluation of 2,4,5-
trisubstituted pyrimidine CDK inhibitors as potential anti-tumour
(21) Zhang, B.; Tan, V. B. C.; Lim, K. M.; Tay, T. E. Molecular
dynamics simulations on the inhibition of Cyclin-dependent kinases 2
and 5 in the presence of activators. J. Comput. Aided Mol. Des. 2006,
20, 647-671
1
2
3
4
5
6
rapamycin,
MTT;
3-(4,5-dimethylthiazol-2-yl)-2,5-
diphenyltetrazolium bromide, PAINS; pan assay interference
compounds, RB; retinoblastoma protein, SP; standard precision,
XP; extra precision
REFERENCES
7
8
9
(22) Caroline, M..; Robb, S. K..; Jacob I.C.; Ekta A.; Smitha, K.
Characterization of CDK(5) inhibitor, 20-223 (aka CP668863) for
colorectal cancer therapy. Oncotarget. 2018; 9:5216-5232.
(23) Vymětalová, L.; Havlíček, L.; Šturc, A.; Skrášková, Z.; Kryštof,
V. 5-Substituted 3-isopropyl-7-[4-(2-pyridyl)benzyl]amino-1(2)H-
pyrazolo[4,3-d]pyrimidines with anti-proliferative activity as potent
and selective inhibitors of cyclin-dependent kinases. Eur. J. Med.
Chem. 2016, 110, 291-301.
(24) Ghelli Luserna di Rora’, A.; Iacobucci, I.; Martinelli, G. The cell
cycle checkpoint inhibitors in the treatment of leukemias. J.
Hematol.Oncol. 2017, 10, 77.
(25) Chang, F.; Lee, J. T.; Navolanic, P. M.; Steelman, L. S.; Shelton,
J. G. Involvement of PI3K/Akt pathway in cell cycle progression,
(1) Asghar, U.; Witkiewicz, A. K.; Turner, N. C.; Knudsen, E. S. The
history and future of targeting cyclin-dependent kinases in cancer
therapy. Nat. Rev. Drug Discov 2015, 14, 130-146.
(2) Malínková, V.; Vylíčil, J.; Kryštof, V. Cyclin-dependent kinase
inhibitors for cancer therapy: a patent review (2009 – 2014). Expert
Opin.Ther. Pat. 2015, 25, 953-970.
(3) Peyressatre, M.; Prével, C.; Pellerano, M.; Morris, M. C. Targeting
Cyclin-Dependent Kinases in Human Cancers: From Small Molecules
to Peptide Inhibitors.Cancers 2015, 7,179-237.
(4) Casimiro, M. C.; Crosariol, M.; Loro, E.; Li, Z.; Pestell, R. G.
Cyclins and Cell Cycle Control in Cancer and Disease. Genes Cancer
2012, 3, 649-657.
(5) McCain, J. First-in-Class CDK4/6 Inhibitor Palbociclib Could
Usher in a New Wave of Combination Therapies for HR+, HER2−
Breast Cancer. Pharm. Ther. 2015, 40, 511–520.
(6) Hortobagyi, G. N.; Stemmer, S. M.; Burris, H. A.; Yap, Y.-S.;
Sonke, G. S. Ribociclib as First-Line Therapy for HR-Positive,
Advanced Breast Cancer. N. Engl. J.Med. 2016, 375, 1738-48.
(7) Pozo, K.; Bibb, J. A. The Emerging Role of Cdk5 in Cancer. Trends
Cancer 2016, 2, 606-618.
(8) Dhavan, R.; Tsai, L.-H. A decade of CDK5. Nat. Rev. Mol. Cell
Biol. 2001, 2, 749-591.
(9) Lopes, J. P.; Agostinho, P. Cdk5: Multitasking between
physiological and pathological conditions. Prog. Neurobiol. 2011, 94,
49-63.
(10) Lenjisa, J. L.; Tadesse, S.; Khair, N. Z.; Wang, S. CDK5 in
oncology: recent advances and future prospects. Fut. Med. Chem. 2017,
9, 1995-2009.
(11) Cerami, E.; Gao, J.; Dogrusoz, U.; Gross, B. E.; Sumer, S. O. The
cBio Cancer Genomics Portal: An Open Platform for Exploring
Multidimensional Cancer Genomics Data. Cancer Discov. 2012, 2,
401-444.
(12) Rhodes, D. R.; Yu, J.; Shanker, K.; Varambally, R.; Ghosh, D.
ONCOMINE: A Cancer Microarray Database and Integrated Data-
Mining Platform. Neoplasia. 2004, 6, 1-6.
(13) Merk, H.; Zhang, S.; Lehr, T.; Ulrich, M.; Bibb, J. A. Liebl, J.
Inhibition of endothelial Cdk5 reduces tumor growth by promoting
non-productive angiogenesis. Oncotarget 2016, 7, 6088-6104.
(14) Ehrlich, S. M.; Liebl, J.; Ardelt, M. A.; Lehr, T.; De Toni, E. N.
Targeting cyclin dependent kinase 5 in hepatocellular carcinoma – A
novel therapeutic approach. J. Hepatol. 2015, 63, 102-13.
(15) Chatterjee, A.; Cutler, S. J.; Doerksen, R. J.; Khan, I. A.;
Williamson, J. S. Discovery of thienoquinolone derivatives as selective
and ATP non-competitive CDK5/p25 inhibitors by structure-based
virtual screening. Bioorg. Med. Chem. 2014, 22, 6409–6421.
(16) Helal, C. J.; Sanner, M. A.; Cooper, C. B.; Gant, T.; Adam, M.
Discovery and SAR of 2-aminothiazole inhibitors of cyclin-dependent
kinase 5/p25 as a potential treatment for Alzheimer’s disease. Bioorg.
Med. Chem. Lett. 2004, 14, 5521-5525.
(17) Ghia, P.; Scarfo, L.; Pathiraja, K.; Derosier, M.; Small, K. A Phase
3 Study to Evaluate the Efficacy and Safety of Dinaciclib Compared to
Ofatumumab in Patients with Refractory Chronic Lymphocytic
Leukemia. Blood 2015, 126, 4171.
(18) McClue, S. J.; Blake, D.; Clarke, R.; Cowan, A.; Wang, S. In vitro
and in vivo antitumor properties of the cyclin dependent kinase
inhibitor CYC202 (R-roscovitine). Int J Cancer. 2002, 102, 463-468.
(19) Parry, D.; Guzi, T.; Shanahan, F.; Davis, N.; Wiswell, D.
Dinaciclib (SCH 727965), a Novel and Potent Cyclin-Dependent
Kinase Inhibitor. Mol. Cancer Ther.2010, 9, 2344-2353.
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
apoptosis, and neoplastic transformation:
a target for cancer
chemotherapy. Leukemia 2003, 17, 590-603.
(26) NavaneethaKrishnan, S.; Rosales, J. L.; Lee, K.-Y. Loss of Cdk5
in breast cancer cells promotes ROS-mediated cell death through
dysregulation of the mitochondrial permeability transition pore.
Oncogene 2018, 1788-1804.
(27) Carter, B. Z.; Mak, P. Y.; Wang, X.; Yang, H.; Andreeff, M.. Focal
Adhesion Kinase as a Potential Target in AML and MDS. Mol. Cancer
Ther.2017, 16, 1133-1144.
(28) Gartel, A. L.; Tyner, A. L. The Role of the Cyclin-dependent
Kinase Inhibitor p21 in Apoptosis. Mol. Cancer Ther. 2002, 1, 639-
649.
(29) Abbas, T.; Dutta, A. p21 in cancer: intricate networks and multiple
activities. Nat. rev. Cancer. 2009, 9, 400-414.
6
ACS Paragon Plus Environment