Society for equipment and a University Research Fellowship (S.
L. H.).
Notes and references
‡
Analytical data for all compounds was consistent with the proposed
structures. Sample data: L UV(H2O) lmax (e) 205 (17500), 221 (6400), 288
(2000 dm3 mol21 cm21) nm; IR (solid) nmax 3410 (br), 2981, 2856, 1666
(br), 1460, 1398, 1354, 1179, 1124, 1087 cm21. ES2 MS (MeCN/H2O): m/z
823 {M 2 H}2; ES+ MS (MeCN/H2O): m/z 869 {M 2 H + 2Na}+, 847 {M
1
+ Na}+, 825 {M + H}+. H NMR (400 MHz, D2O, 300 K) dH 2.2 (3H, s,
ArCH3), 2.7–3.9 (48H, m, NCH2), 7.2 (2H, br, s, ArH). 13C{1H} NMR (100
MHz, D2O, 300 K) dC 42.8, 48.2, 48.6, 49.3, 49.5, 50.6, 51.1, 52.2, 53.6,
56.2, 63.2 (br NCH2), 116.8 (q, CF3CO2H), 133.6, 142.0 (br Ar), 163.6 (q,
CF3CO2H), 169.9, 174.9 (CO). Found C, 41.82; H, 5.09; N, 8.95; calc. for
C37H60N8O13·4CF3CO2H: C, 42.19; H, 5.0; N, 8.75 %.
Fig. 2 Time resolved profile of the luminescence from a solution of Yb2L
in H2O. The graph shows changes in intensity of the luminescence at 980
nm with time and is fitted by reconvolution of the detector response with
two exponential components corresponding to t = 0.51 and 1.67 ms.
Yb2L IR (solid) nmax 2860, 1591 (br), 1431, 1415, 1241, 1165, 1083,
1027 cm21; UV(H2O) lmax (e) 202 (14500), 245 (2600), 307 (1300), 977
(20 dm3 mol21 cm21) nm; ES2 MS (MeCN): m/z 1162 {M 2 H}2. 1H
NMR (500 MHz, CD3OD, 300 K) Peaks consistent with the proposed
structure were observed (the spectrum is available as ESI. A relatively sharp
peak was observed for each proton environment, together with a broader
peak of roughly equal intensity somewhat shifted and in some cases
partially overlapping, suggesting either inequivalent binding of the two
ytterbiums, or the existence of two distinct forms of the complex in a 1 : 1
ratio, each having equivalent binding of the two ytterbiums. Selected peak
positions for the sharp peaks are reported for the characteristic dipolar
shifted regions. dH 156.9, 134.4, 118.0, 72.5, 57.8, 39.4, 35.2, 215.4,
221.0, 235.0, 247.5, 260.4, 265.9, 281.8, 2126.5.
Table 1 Luminescence lifetimes and inner sphere hydration numbers (q) for
Yb2L
tH O/ms
1.67 (67%), 0.51 (33%)
4.95 (67%), 1.17 (33%)
2
tD O/ms
2
q
0.3,
1.0
Luminescence lifetimes have errors of ±10%, relative weightings are quoted
in brackets.
§ The sample was irradiated at 337 nm using the output from a pulsed
nitrogen laser (PTI GL3300). Luminescence from the sample was collected
at right angles to the incident beam and focused onto the slits of a
monochromator (PTI-120). The growth and decay of the luminescence at
selected wavelengths was detected using a germanium photodiode (Edin-
burgh Instruments, EI-P) and recorded using a digital oscilloscope
(Tektronix TDS220).
the LMCT state, as might be expected with an electron donating
phenolate antenna group. Systems containing very similar
chromophores do not act as sensitisers for europium,6 where the
LMCT state is lower in energy than the excited state. In the case
of ytterbium this situation is reversed, making LMCT a suitable
pathway to sensitising the emissive state of the metal.4
For a lanthanide complex, the inner sphere hydration number,
q, can be established using the equation
1 D. Parker, R. S. Dickins, H. Puschmann, C. Crossland and J. A. K.
Howard, Chem. Rev., 2002, 102, 1977; D. Parker and J. A. G. Williams,
J. Chem. Soc., Dalton Trans., 1996, 3613; I. Hemmila and S. Webb, Drug
Disc. Today, 1997, 2, 373; A. Beeby, S. W. Botchway, I. M. Clarkson, S.
Faulkner, A. W. Parker, D. Parker and J. A. G Williams, J. Photochem.
Photobiol. B, 2000, 57, 892.
2 A. Beeby and S. Faulkner, Chem. Phys. Lett., 1997, 266, 116; A. Beeby,
D. Parker and J. A. G. Williams, J. Chem. Soc., Perkin Trans. 2, 2001,
1268; M. H. V. Werts, J. W. Hofstraat, F. A. J. Guerts and J. W.
Verhoeven, Chem. Phys. Lett., 1997, 276, 196.
q = ALn(1/tH O 2 1/tD O 2 B)
2
2
where ALn is a proportionality constant unique to a given
lanthanide (AYb = 1.0 µs), tH O and tD O are the luminescence
3 A. Beeby, R. S. Dickins, S. Faulkner, D. Parker and J. A. G. Williams,
Chem. Commun., 1997, 1401; W. D. Horrocks, J. P. Bolender, W. D.
Smith and R. M. Supkowski, J. Am. Chem. Soc., 1997, 119, 5972; L. H.
Slooff, A. Polman, M. P. O. Wolbers, F. C. J. M. van Veggel, D. N.
Reinhoudt and J. W. Hofstraat, J. Appl. Phys., 1998, 83, 497.
4 S. Faulkner, B. P. Burton-Pye, T. Khan, L. R. Martin, S. D. Wray and P.
Skabara, Chem. Commun., 2002, 1668; A. Beeby, S. Faulkner and J. A.
G. Williams, J. Chem. Soc., Dalton Trans., 2002, 1918; R. M.
Supkowski, J. P. Bolender, W. D. Smith, L. E. L. Reynolds and W. D.
Horrocks, Coord. Chem. Rev., 1999, 185–186, 307–497; S. I. Klink, L.
Grave, D. N. Reinhoudt, F. C. J. M. van Veggel, F. A. J. Guerts and J. W.
Hofstraat, J. Phys. Chem. A, 2000, 104, 5457.
5 See for example J.-C. G. Bunzli and C. Piguet, Chem. Rev., 2002, 102,
1897; F. Avecilla, C. Platas-Iglesias, R. Rodriguez-Cortinas, G. Guille-
mot, J. C. G. Bunzli, C. D. Brondino, C. F. G. C. Geraldes, A. de Blas and
T. Rodriguez-Blas, J. Chem. Soc., Dalton Trans., 2002, 4658; N.
Ishikawa, T. Iino and Y. Kaizu, J. Phys. Chem. A, 2002, 106, 9543; J. P.
Costes, J. P. Laussac and F. Nicodeme, J. Chem. Soc., Dalton Trans.,
2002, 2731; A. W.-H. Lam, W.-T. Wong, S. Gao and G. Wenand X.-.X
Zhang, Eur J. Inorg. Chem., 2003, 149–163.
2
2
lifetimes in water and D2O measured in microseconds and B is
a correction term which accounts for the presence of outer
sphere water molecules (B = 0.1 µs for ytterbium).8 In this case
we can obtain two q values. It is reasonable to pair the
components with similar weightings with one another, partic-
ularly in the case of ytterbium, where significant quenching by
O–D is possible. Such a treatment gives inner sphere hydration
numbers of 0.3 and 1.0 (Table 1).
Taken together, the evidence implies the formation, either of
a binuclear complex with two distinct binding sites, or of the co-
existence of two forms of the complexes in solution. Both of
these are consistent with the luminescence data, and with the
complexity of the axial resonances in the proton spectrum of
Yb2L. One binding site is eight coordinate, while the other is
seven coordinate since the bulk of the DO3A unit prevents both
lanthanides from sharing the phenolate oxygen donor. The inner
sphere hydration numbers are lower than might be expected,
probably as a result of the lipophilicity of the linking phenolate
unit preventing the close approach of additional water mole-
cules. We are currently engaged in carrying out a systematic
study of related Ln2L complexes, the results of which will be
reported in due course.
6 N. M. Shaveleev, S. J. A. Pope, Z. R. Bell, S. Faulkner and M. D. Ward,
Dalton Trans., 2003, 808; F. R. Gonçalves e Silva, O. L. Malta, C.
Reinhard, H. U. Gudel, C. Piguet, J. E. Moser and J. C. G. Bunzli, J. Phys.
Chem. A, 2002, 106, 1670.
7 P. L. Timmins, M. Lunn and S. L. Heath, manuscript in preparation.
8 A. Beeby, I. M. Clarkson, R. S. Dickins, S. Faulkner, D. Parker, L. Royle,
A. S. de Sousa, J. A. G. Williams and M. Woods, J. Chem. Soc., Perkin
Trans. 2, 1999, 493.
The authors would like to thank the Universities of
Manchester and Durham and EPSRC for support, and the Royal
CHEM. COMMUN., 2003, 1550–1551
1551