Activation of E—E and E—C bonds
Russ.Chem.Bull., Int.Ed., Vol. 54, No. 3, March, 2005
587
9. H. Kuniyasu, A. Ogawa, S.ꢀI. Miyazaki, I. Ryu, N. Kambe,
and N. Sonoda, J. Am. Chem. Soc., 1991, 113, 9796.
10. A. Ogawa, J. Organomet. Chem., 2000, 611, 463.
11. V. P. Ananikov, M. A. Kabeshov, I. P. Beletskaya, G. G.
Aleksandrov, and I. L. Eremenko, J. Organomet. Chem., 2003,
687, 451.
12. V. P. Ananikov, I. P. Beletskaya, G. G. Aleksandrov, and
I. L. Eremenko, Organometallics, 2003, 22, 1414.
13. R. Oilunkaniemi, R. S. Laitinen, and M. Ahlgren,
J. Organomet. Chem., 2001, 623, 168.
14. R. Oilunkaniemi, R. S. Laitinen, and M. Ahlgren,
J. Organomet. Chem., 1999, 587, 200.
15. I. Nakanishi, S. Tanaka, K. Matsumoto, and S. Ooi, Acta
Crystallogr., Sect. C., 1994, 50, 58.
16. M. S. HannuꢀKuure, K. Paldán, R. Oilunkaniemi, R. S.
Laitinen, and M. Ahlgren, J. Organomet. Chem., 2003,
687, 538.
*
*
*
Thus, in the present work we realized for the first time
a catalytic element—element bond activation followed by
the addition to alkynes under microwave irratiation conꢀ
ditions. It was shown that the reaction in Ph2S2/PPh3
melt proceeds as palladiumꢀcatalyzed stereoselective adꢀ
dition of diphenyl disulfide to the triple bond, resulting in
nearly 100% yields of Zꢀ(PhS)HC=C(SPh)R. The reacꢀ
tion involving diphenyl diselenide depends on the microꢀ
wave power. At low microwave power, a palladiumꢀcataꢀ
lyzed stereoselective synthesis of Zꢀ(PhSe)HC=C(SePh)R
similar to the reaction involving diphenyl disulfide proꢀ
ceeds in the Ph2Se2/PPh3 melt. At a higher microwave
power, a previously unknown catalytic reaction of diꢀ
phenyl diselenide with triphenylphosphine resulting in
Se=PPh3 and Ph2Se proceeds in the system under study.
A similar chemical transformation is also characteristic of
other phosphine and phosphite ligands.
Oxidative addition of Ph2Se2 to Pd0 in Ph2Se2/PPh3
melt under microwave irradiation conditions results in
[Pd2(SePh)4(PPh3)2] dinuclear complexes detected by
31P{1H} NMR spectroscopy.
According to the results of quantumꢀchemical calcuꢀ
lations, both mononuclear and dinuclear palladium comꢀ
plexes can catalyze the Se—C bond cleavage reaction.
The reactions involving dinuclear complexes can proceed
with smaller energy requirements, which is due to stabiliꢀ
zation of the bridging selenium ligands.
17. A. D. Becke, Phys. Rev. A, 1988, 38, 3098.
18. C. Lee, W. Yang, and R. G. Parr, Phys. Rev. B, 1988, 37, 785.
19. A. D. Becke, J. Chem. Phys., 1993, 98, 5648.
20. P. J. Hay and W. R. Wadt, J. Chem. Phys., 1985, 82, 270.
21. W. R. Wadt and P. J. Hay, J. Chem. Phys., 1985, 82, 284.
22. P. J. Hay and W. R. Wadt, J. Chem. Phys., 1985, 82, 299.
23. T. H. Dunning, Jr. and P. J. Hay, in Modern Theoretical
Chemistry, Ed. H. F. Schaefer, III, Vol. 3, Plenum, New
York, 1976, 1.
24. R. Ditchfield, W. J. Hehre, and J. A. Pople, J. Chem. Phys.,
1971, 54, 724.
25. G. Orlova and J. D. Goddard, J. Phys. Chem. A, 1999,
103, 6825.
26. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria,
M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr.,
T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S.
Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi,
G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji,
M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa,
M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai,
M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross,
C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann,
O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W.
Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth,
P. Salvador, J. J. Dannenberg, V. G. Zakrzewski,
S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K.
Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman,
J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski,
B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz,
I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A.
AlꢀLaham, C. Y. Peng, A. Nanayakkara, M. Challacombe,
P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong,
C. Gonzalez, and J. A. Pople, Gaussian 03, Rev. C. 1,
Gaussian, Inc., Pittsburgh (PA), 2003.
This work was financially supported by the Russian
Federation Presidential Foundation (Grant for Young
Scientists MDꢀ2384.2004.3), the Russian Foundation for
Basic Research (Project No. 04ꢀ03ꢀ32501), and the
Chemistry and Materials Science Division of the Russian
Academy of Sciences (in the framework of the Program
No. 1 "Theoretical and experimental investigations of the
nature of chemical bonding and mechanisms of the most
important chemical reactions and processes").
References
1. M. Larhed, C. Moberg, and A. Hallberg, Acc. Chem. Res.,
2002, 35, 717.
2. K. Tanaka and F. Toda, Chem. Rev., 2000, 100, 1025.
3. R. S. Varma, Pure Appl. Chem., 2001, 73, 193.
4. J. O. Metzger, Angew. Chem., Int. Ed. Engl., 1998, 37, 2975.
5. A. Loupy, A. Petit, J. Hamelin, F. TexierꢀBoullet,
P. Jacquault, and D. Mathe, Synthesis, 1998, 1213.
6. I. V. Tselinskii, A. A. Astrat´ev, and A. S. Brykov, Zh. Obshch.
Khim., 1996, 66, 1699 [Russ. J. Gen. Chem., 1996, 66 (Engl.
Transl.)].
27. G. Schaftenaar and J. H. Noordik, J. Comput.ꢀAided Mol.
Des., 2000, 14, 123.
28. A. Dedieu, Chem. Rev., 2000, 100, 543.
29. D. G. Musaev and K. Morokuma, Top. Catal., 1999, 7, 107.
30. N. Koga and K. Morokuma, Chem. Rev., 1991, 91, 823.
7. V. P. Ananikov and I. P. Beletskaya, Org. Biomol. Chem.,
2004, 2, 284.
8. V. P. Ananikov and I. P. Beletskaya, Izv. Akad. Nauk. Ser.
Khim., 2004, 534 [Russ. Chem. Bull., Int. Ed., 2004, 53, 561].
Received December 10, 2004;
in revised form February 16, 2005