Organic Letters
Letter
Press: Cambridge, 1990. (e) Lee, K. H.; Xiao, Z. Phytochem. Rev. 2003,
2, 341.
Scheme 5. Total Synthesis of (−)-Isopodophyllotoxin
(2) (a) Issell, B. F.; Muggia, F. M.; Carter, S. K. Etoposide (VP-16).
Current Status and New Developments; Academic Press, New York,
1984. (b) St. Fhelin, H. F.; Wartburg, A. V. Cancer Res. 1991, 51, 5.
(c) Bohlin, L.; Rosen, B. Drug Discovery Today 1996, 1, 343.
(d) Imbert, T. F. Biochimie 1998, 80, 207.
(3) For biological activity of picropodophyllin, see: (a) E, C.; Li, J.;
Shao, D.; Zhang, D.; Pan, Y.; Chen, L.; Zhang, X. Oncol. Res. 2014, 21,
103. (b) Singh, R. K.; Gaikwad, S. M.; Jinager, A.; Chaudhury, S.;
Maheshwari, A.; Ray, P. Cancer Lett. 2014, 354 (2), 254. (c) Wu, Y. T.;
Wang, B. J.; Miao, S. W.; Gao, J. J. Mol. Med. Rep. 2015, 12, 7045.
(d) Zhang, Q.; Pan, J.; Lubet, R. A.; Wang, Y.; You, M. Mol. Carcinog.
2015, 54, E129.
(4) For reviews, see: (a) Ward, R. S. Phytochem. Rev. 2003, 2, 391.
(b) Ward, R. S. Nat. Prod. Rep. 1999, 16, 75. (c) Ward, R. S. Synthesis
1992, 719. (d) Sun, J. S.; Liu, H.; Guo, X. H.; Liao, J. X. Org. Biomol.
Chem. 2016, 14, 1188 For the recent synthesis of ( )-podophyllotox-
in, see:. (e) Wu, Y.; Zhang, H.; Zhao, Y.; Zhao, J.; Chen, J.; Li, L. Org.
Lett. 2007, 9, 1199. (f) Ting, C. P.; Maimone, T. J. Angew. Chem., Int.
Ed. 2014, 53, 3115.
(5) Total syntheses of (−)-podophyllotoxin: (a) Andrews, R. C.;
Teague, S. J.; Meyers, A. I. J. Am. Chem. Soc. 1988, 110, 7854. (b) Van
Speybroeck, R.; Guo, H.; Van der Eycken, J.; Vandewalle, M.
Tetrahedron 1991, 47, 4675. (c) Bush, E. J.; Jones, D. W. J. Chem. Soc.,
Perkin Trans. 1 1996, 1, 151. (d) Hadimani, S. B.; Tanpure, R. P.; Bhat,
S. V. Tetrahedron Lett. 1996, 37, 4791. (e) Berkowitz, D. B.; Choi, S.;
Maeng, J.-H. J. Org. Chem. 2000, 65, 847. (f) Reynolds, A. J.; Scott, A.
J.; Turner, C. I.; Sherburn, M. S. J. Am. Chem. Soc. 2003, 125, 12108.
(g) Stadler, D.; Bach, T. Angew. Chem., Int. Ed. 2008, 47, 7557. (h)
For synthesis of (+)-podophyllotoxin, see: Wu, Y.; Zhao, J.; Chen, J.;
Pan, C.; Li, L.; Zhang, H. Org. Lett. 2009, 11, 597.
(6) (a) Hajra, S.; Giri, A. K. J. Org. Chem. 2008, 73, 3935. (b) Hajra,
S.; Giri, A. K.; Hazra, S. J. Org. Chem. 2009, 74, 7978. (c) For initial
work on proline catalyzed cross aldol reaction of bromopiperonal and
4-oxobutanoate, see: Hazra, S. Asymmetric Synthesis of Lignans by
Aldol Reactions. Ph.D. Dissertation, Indian Institute of Technology
Kharagpur, India, 2012.
(7) Examples of the organocatalytic direct cross-aldol reaction of
electron-rich aromatic aldehyde are scarce in the literature. During our
investigation, Hamashima and Kan et al. utilized our protocol (ref 6)
for O-nosyl-protected hydroxybenzaldehyde: (a) Kawabe, Y.; Ishikawa,
R.; Akao, Y.; Yoshida, A.; Inai, M.; Asakawa, T.; Hamashima, Y.; Kan,
T. Org. Lett. 2014, 16, 1976. (b) Mukherjee, S.; Yang, J. W.;
Hoffmann, S.; List, B. Chem. Rev. 2007, 107, 5471.
(8) Intramolecular Heck reaction: (a) Dounay, A. B.; Overman, L. E.
Chem. Rev. 2003, 103, 2945. (b) Nicolaou, K. C.; Bulger, P. G.; Sarlah,
D. Angew. Chem., Int. Ed. 2005, 44, 4442. (c) Negishi, E.; Coperet, C.;
́
Ma, S.; Liou, S. Y.; Liu, F. Chem. Rev. 1996, 96, 365. (d) Link, J. T.
Org. React. 2002, 60, 157.
(9) Transfer hydrogenation and its mechanism: (a) Ram, S.;
Ehrenkaufer, R. E. Synthesis 1988, 91. (b) Ranu, B. C.; Sarkar, A.
Tetrahedron Lett. 1994, 35, 8649. (c) Hauwert, P.; Boerleider, R.;
Warsink, S.; Weigand, J. J.; Elsevier, C. J. J. Am. Chem. Soc. 2010, 132,
16900. (d) Hauwert, P.; Maestri, G.; Sprengers, J. W.; Catellani, M.;
Elsevier, C. J. Angew. Chem., Int. Ed. 2008, 47, 3223. (e) Broggi, J.;
Jurcík, V.; Songis, O.; Poater, A.; Cavallo, L.; Slawin, A. M. Z.; Cazin,
C. S. J. J. Am. Chem. Soc. 2013, 135, 4588.
only five steps starting from commercially available 6-
bromopiperonal with an overall yield of 27% and 99% of ee,
along with the total synthesis of (−)-picropodophyllin,
(−)-isopodophyllotoxin, (+)-isopicropodophyllin, and (+)-iso-
picropodophyllone and a formal total synthesis of (+)-podo-
phyllotoxin. The hydrogenation studies reported herein imply
that even with the same catalyst, distal and proximal
stereoselectivity can be achieved by altering the hydrogen
source and solvent. The advantage of our strategy lies in the
utilization of three catalytic steps out of five steps employed as
well as in use of the common intermediate to synthesize other
stereoisomers.
ASSOCIATED CONTENT
* Supporting Information
■
S
The Supporting Information is available free of charge on the
Experimental details for all reactions and analytic details
AUTHOR INFORMATION
Corresponding Author
■
Tel: (+91)-522-2668861.
ORCID
Present Address
§(S.H.) Department of Applied Chemistry, Faculty of
Engineering, Osaka University, Suita, Osaka 5650871, Japan
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
This research was supported by CSIR, New Delhi (02(0184)/
14/EMR-II). S.G. thanks UGC, New Delhi, for a research
fellowship. We thank the Director, CBMR, for research
facilities.
DEDICATION
■
This work is dedicated to Professor Tarun K. Sarkar (former
Professor of Chemistry, IIT Kharagpur) on the occasion of his
70th birthday.
REFERENCES
■
(1) For reviews, see: (a) Imbert, T. Biochimie 1998, 80, 207. (b) Yu,
X.; Che, Z.; Xu, H. Chem. - Eur. J. 2017, 23, 1. (c) Ward, R. S. Nat.
Prod. Rep. 1997, 14, 43. (d) Ayres, D. C.; Loike, J. D. Lignans:
Chemical, Biological and Clinical Properties; Cambridge University
6533
Org. Lett. 2017, 19, 6530−6533