T. A. Blizzard et al. / Bioorg. Med. Chem. Lett. 15 (2005) 3912–3916
3915
Morgan, J. D.; Wu, J. Y.; Chen, H. Y.; Kim, S.; Chan, W.;
Birzin, E. T.; Yang, Y.; Pai, L.; Zhang, Z.; Hayes, E. C.;
DaSilva, C. A.; Tang, W.; Rohrer, S. P.; Schaeffer, J. M.;
Hammond, M. L. Bioorg. Med. Chem. Lett. 2004, 14,
3865; (f) Blizzard, T. A.; DiNinno, F.; Morgan, J. D., II;
Chen, H. Y.; Wu, J. Y.; Kim, S.; Chan, W.; Birzin, E. T.;
Yang, Y.; Pai, L.; Li, Y.; Zhang, Z.; Hayes, E. C.;
DaSilva, C. A.; Fitzgerald, P. M. D.; Sharma, N.; Tang,
W.; Rohrer, S. P.; Schaeffer, J. M.; Hammond, M. L.
Bioorg. Med. Chem. Lett. 2005, 15, 107.
the dihydrobenzoxathiin cores. We also thank Dr. Der-
ek Von Langen, Mr. Daniel Kim, Mr. Steve Young, and
Mr. Jerry Morgan for assistance in the large-scale prep-
aration of side chain 20. We thank Dr. Sudha Warrier
Mitra and Mr. Joel Yudkovitz for the estrogen receptor
down-regulation experiments.
References and notes
4. Aldrich Chemical Company.
1. (a) Jordan, V. C. J. Med. Chem. 2003, 46, 883; (b) Jordan,
V. C. J. Med. Chem. 2003, 46, 1081.
5. All new compounds were characterized by LC–MS and
400, 500, or 600 MHz 1H NMR. Selected compounds were
characterized further by elemental analysis.
2. (a) Mosselman, S.; Polman, J.; Dijkema, R. FEBS Lett.
1996, 392, 49; (b) Kuiper, G. G.; Enmark, E.; Pelto-
Huikko, M.; Nilsson, S.; Gustafsson, J. A. Proc. Natl.
Acad. Sci. U.S.A. 1996, 93, 5925; (c) Malamas, M. S.;
Manas, E. S.; McDevitt, R. E.; Gunawan, I.; Xu, Z.;
Collini, M. D.; Miller, C. P.; Dinh, T.; Henderson, R. A.;
Keith, J. C.; Harris, H. A. J. Med. Chem. 2004, 47, 5021;
(d) Collini, M. D.; Kaufman, D. H.; Manas, E. S.; Harris,
H. A.; Henderson, R. A.; Xu, Z. B.; Unwalla, R. J.; Miller,
C. P. Bioorg. Med. Chem. Lett. 2004, 14, 4925; (e) Yang,
W.; Wang, Y.; Ma, Z.; Golla, R.; Stouch, T.; Seethala, R.;
Johnson, S.; Zhou, R.; Gungor, T.; Feyen, J. H. M.;
Dickson, J. K. Bioorg. Med. Chem. Lett. 2004, 14, 2327; (f)
Yang, C.; Edsall, R. J.; Harris, H. A.; Zhang, X.; Manas,
E. S.; Mewshaw, R. E. Bioorg. Med. Chem. 2004, 12, 2553;
(g) Chesworth, R.; Zawistoski, M. P.; Lefker, B. A.;
Cameron, K. O.; Day, R. F.; Mangano, F. M.; Rosati, R.
L.; Colella, S.; Petersen, D. N.; Brault, A.; Lu, B.; Pan, L.
C.; Perry, P.; Ng, O.; Castleberry, T. A.; Owen, T. A.;
Brown, T. A.; Thompson, D. D.; DaSilva-Jardine, P.
Bioorg. Med. Chem. Lett. 2004, 14, 2729; (h) Meyers, M.
J.; Sun, J.; Carlson, K. E.; Marriner, G. A.; Katzenel-
lenbogen, B. S.; Katzenellenbogen, J. A. J. Med. Chem.
2001, 44, 4230; (i) Mortensen, D. S.; Rodriguez, A. L.;
Carlson, K. E.; Sun, J.; Katzenellenbogen, B. S.; Katzen-
ellenbogen, J. A. J. Med. Chem. 2001, 44, 3838; (j)
Muthyala, R. S.; Carlson, K. E.; Katzenellenbogen, J. A.
Bioorg. Med. Chem. Lett. 2003, 13, 4485; (k) Henke, B. R.;
Consler, T. G.; Go, N.; Hale, R. L.; Hohman, D. R.;
Jones, S. A.; Lu, A. T.; Moore, L. B.; Moore, J. T.;
Orband-Miller, L. A.; Robinett, R. G.; Shearin, J.;
Spearing, P. K.; Stewart, E. L.; Turnbull, P. S.; Weaver,
S. L.; Williams, S. P.; Wisely, G. B.; Lambert, M. H. J.
Med. Chem. 2002, 45, 5492; (l) Schopfer, U.; Schoefter, P.;
Bischoff, S. F.; Nozulak, J.; Feuerbach, D.; Floersheim, P.
J. Med. Chem. 2002, 45, 1399; (m) Manas, E. S.; Unwalla,
R. J.; Xu, Z. B.; Malamas, M. S.; Miller, C. P.; Harris, H.
A.; Hsiao, C.; Akopian, T.; Hum, W. T.; Malakian, K.;
Wolfrom, S.; Bapat, A.; Bhat, R. A.; Stahl, M. L.; Somers,
W. S.; Alvarez, J. C. J. Am. Chem. Soc. 2004, 126, 15106.
3. (a) Kim, S.; Wu, J. Y.; Birzin, E. T.; Frisch, K.; Chan, W.;
Pai, L.; Yang, Y. T.; Mosley, R. T.; Fitzgerald, P. M. D.;
Sharma, N.; DiNinno, F.; Rohrer, S.; Schaeffer, J. M.;
Hammond, M. L. J. Med. Chem. 2004, 47, 2171; (b) Chen,
H. Y.; Kim, S.; Wu, J. Y.; Birzin, E. T.; Chan, W.; Yang,
Y. T.; DiNinno, F.; Rohrer, S.; Schaeffer, J. M.;
Hammond, M. L. Bioorg. Med. Chem. Lett. 2004, 14,
2551; (c) Kim, S.; Wu, J.; Chen, H. Y.; Birzin, E. T.; Chan,
W.; Yang, Y. T.; Colwell, L.; Li, S.; DiNinno, F.; Rohrer,
S.; Schaeffer, J. M.; Hammond, M. L. Bioorg. Med. Chem.
Lett. 2004, 14, 2741; (d) Blizzard, T. A.; DiNinno, F.;
Morgan, J. D., II; Chen, H. Y.; Wu, J. Y.; Gude, C.; Kim,
S.; Chan, W.; Birzin, E. T.; Yang, Y.; Pai, L.; Zhang, Z.;
Hayes, E. C.; DaSilva, C. A.; Tang, W.; Rohrer, S. P.;
Schaeffer, J. M.; Hammond, M. L. Bioorg. Med. Chem.
Lett. 2004, 14, 3861; (e) Blizzard, T. A.; DiNinno, F.;
6. Analytical chiral HPLC analysis was performed on a
Chiralpak AD 4.6 · 250 mm 10 lm column eluted with 3:1
heptane/isopropanol at 0.4 mL/min. Under these condi-
tions, the major (R,S)-diastereomer of 19 has a retention
time of 23.7 min, while the minor (S,S)-diastereomer
elutes at 15.1 min.
7. The optical purity of 20 was confirmed by NMR analysis of
the corresponding Mosher ester. The 600 MHz 1H NMR of
the Mosher ester clearly showed the presence of only one
diastereomer. By contrast, the corresponding NMR spec-
trum of the Mosher ester of the 1:1 diastereomeric mixture
generated using racemic acid as the starting material clearly
showed both diastereomers. Similarly, when the reaction
sequence was run with racemic acid and racemic amine as
starting materials, the NMR spectrum of the Mosher ester
of the product showed P3 diastereomers.
8. (a) The IC50 values were generated in an estrogen receptor
ligand binding assay. This scintillation proximity assay
was conducted in NEN Basic Flashplates using tritiated
estradiol and full-length recombinant human ERa and
ERb proteins. Compounds were evaluated in duplicate in
a single assay. In our experience, this assay provided IC50
values that are reproducible to within a factor of 2–3.
Dihydrobenzoxathiin 1 (n = 36) and estradiol (n > 100)
were tested in multiple assays; data reported in Table 1 are
an average of all determinations; (b) Data for 7 and 8
reflect a 20 h incubation prior to radioactive quantifica-
tion; all other data obtained with 3 h incubation.
9. (a) The uterine weight assay is an in vivo assay based on a
published procedure9c that measures estrogen agonism
and antagonism in rat uterine tissue. Compounds are
dosed orally at the indicated doses, except for fulvestrant,
which was dosed subcutaneously. Agonism is reported as
percentage of estradiol control; antagonism reported as
percentage antagonism of estradiol; (b) Estradiol exhibited
100% agonism at 4 lg/kg; (c) Wakeling, A. E.; Valcaccia,
B.; Newboult, E.; Green, L. R. J. Steroid Biochem. 1984,
20, 111.
10. This is an in vitro MCF-7 breast cancer cell proliferation
assay adapted to a 96-well format. Cells are grown in
estrogen-depleted media for 6 days and then treated with
the test compound for 7 days. To evaluate the antagonist
activity of a test compound, this treatment is given in the
presence of 0.003 nM (the EC70) estradiol. The amount of
cell growth is determined by measuring the protein content
of living cells and an IC50 for the test compound is
determined.
11. Levin, M.; DÕSouza, N.; Castaner, J. Drugs Future 2001,
26, 841.
12. Tan, Q.; Blizzard, T. A.; Morgan, J. D., II; Birzin, E. T.;
Chan, W.; Yang, Y.; Pai, L.; Hayes, E. C.; DaSilva, C. A.;
Mitra, S. W.; Yudkovitz, J.; Wilkinson, H. A.; Sharma,
N.; Fitzgerald, P. M. D.; Li, S.; Colwell, L.; Fisher, J. E.;
Adamski, S.; Reszka, A. A.; Kimmel, D.; DiNinno, F.;
Rohrer, S. P.; Freedman, L. P.; Schaeffer, J. M.;