Angewandte
Chemie
[10] M. Malecki, A. Hsu, L. Truong, S. Sanchez, Proc. Natl. Acad. Sci.
from a comparison of experiments involvingthe empty and
the filled gripper that it is the gold cluster rather than the
gripper itself that is the responsible for the quenching, which
is as expected in view of the UV-absorption properties of the
ligand. Moreover, the fluorescence of both the duplex without
the gripper and the labeled single strand decreases with the
temperature; the latter, however, shows a higher level of
fluorescence intensity, which is attributable to the poorer
stackingof the 3 ’-fluorescein with the single strand. The
different baseline courses for the single- and double-stranded
species also explain why a slight increase in fluorescence is
observed at the meltingtransition for the duplex with the
empty gripper.
USA 2002, 99, 213 – 218.
[11] R. Shigemoto, A. Kulik, J. D. B. Roberts, H. Ohishi, Z. Nusser, T.
Kaneko, P. Somogyi, Nature 1996, 381, 523 – 525.
[12] C. A. Mirkin, R. L. Letsinger, R. C. Mucic, J. J. Storhoff, Nature
1996, 382, 607 – 609.
[13] A. P. Alivisatos, X. Peng, T. E. Wilson, K. P. Johnsson, C. J.
Loweth, M. P. Bruchez, Jr., P. G. Schultz, Nature 1996, 382, 609 –
611.
[14] C. M. Niemeyer, Angew. Chem. 2001, 113, 4254 – 4287; Angew.
Chem. Int. Ed. 2001, 40, 4128 – 4158.
[15] B. Dubertret, M. Calame, A. J. Libchaber, Nat. Biotechnol. 2001,
19, 365 – 370.
[16] K. Hamad-Schifferli, J. J. Schwartz, A. T. Santos, S. Zhang, J. M.
Jacobson, Nature 2002, 415, 152 – 155.
[17] L. H. Eckardt, K. Naumann, W. M. Pankau, M. Rein, M.
Schweitzer, N. Windhab, G. von Kiedrowski, Nature 2002, 420,
286.
[18] A. Luther, R. Brandsch, G. von Kiedrowski, Nature 1998, 396,
245 – 248.
Any conceivable application of gold clusters in DNA bio-
and nanotechnology in which their remarkable properties are
employed will require compatibility of the label with at least
the basic procedures of molecular biology. To the best of our
knowledge, the gripped cluster presented here is the first
example of an Au55 monolabel survivingthe temperature
conditions of PCR and hybridization protocols. A typical
PCR experiment may be equivalent to around 100 min of the
heatingexperiments described above, consideringthat the
exposure to a temperature of 958C lasts for only around 1 min
in PCR whereas each of these heatingcycles lasted 6 min at
958C. The average temperature in our experiment is close to
that of PCR, so that one cycle in our experiment may be
equivalent to four to six typical PCR cycles. It is evident from
Figure 3 that only a small fraction (less than 10%) of the gold
nanocrystals did not survive the first 100 min of treatment. It
should be emphasized that the full potential of universal
fluorescence quenching(e.g. in multiplexed quantitative PCR
of gene sets by employing beacon sets with different dyes in
the same tube) and radio-frequency-induced single-molecule
heating(e.g. for nanoscale robotics) can only be realized with
thermostable cluster materials.[28]
[19] G. von Kiedrowski, L. H. Eckardt, K. Naumann, W. M. Pankau,
M. Reimold, M. Rein, Pure Appl. Chem. 2003, 75, 609 – 619.
[20] N. C. Seeman, Nature 2003, 421, 427 – 431.
[21] S. Liao, N. C. Seeman, Science 2004, 306, 2072 – 2074.
[22] S. Xiao, F. Liu, A. E. Rosen, J. F. Hainfeld, N. C. Seeman, K.
Musier-Foryth, R. A. Kiehl, J. Nanopart. Res. 2002, 4, 313 – 317.
[23] R. Elghanian, J. Storhoff, R. C. Mucic, R. L. Letsinger, C. A.
Mirkin, Science 1997, 277, 1078 – 1081.
[24] W. M. Pankau, K. Verbist, G. von Kiedrowski, Chem. Commun.
2001, 519 – 520; a tetrapodal thioether system was reported a
short time later: X. M. Li, M. R. de Jong, K. Inoue, S. Shinkai, J.
Huskens, D. N. Reinhoudt, J. Mater. Chem. 2001, 11, 1919 – 1923.
[25] H. Yang, J. E. Reardon, P. A. Frey, Biochemistry 1984, 23, 3857 –
3862.
[26] H. Rapoport, W. Vogel, H. Cꢀlfen, R. Schlꢀgl, J. Phys. Chem. B
1997, 101, 4175 – 4183.
[27] N. T. Wilson, R. L. Johnston, Phys. Chem. Chem. Phys. 2002, 4,
4168 – 4171.
[28] C. M. Niemeyer, M. Adler, Angew. Chem. 2002, 114, 3933 – 3937;
Angew. Chem. Int. Ed. 2002, 41, 3779 – 3783.
Received: July 7, 2005
Revised: December 12, 2005
Published online: February 22, 2006
Keywords: cluster compounds · DNA · fluorescence · gold ·
.
nanotechnology
[1] G. Schmid, R. Boese, R. Pfeil, F. Bandermann, S. Meyer,
G. H. M. Calis, J. W. A. van der Velden, Chem. Ber. 1981, 114,
3634 – 3642.
[2] M. Haruta, S. Tsubota, T. Kobayashi, H. Kageyama, M. J. Genet,
D. J. Delmon, J. Catal. 1993, 144, 175 – 192.
[3] G. Schmid, U. Simon, Chem. Commun. 2005, 697 – 710.
[4] Y. Volokitin, J. Sinzig, L. J. de Jongh, G. Schmid, I. I. Moiseev,
Nature 1996, 384, 621 – 623.
[5] J. F. Hainfeld, F. R. Furuya, J. Histochem. Cytochem. 1992, 40,
177 – 184.
[6] M. Bendayan, Science 2001, 291, 1363 – 1365.
[7] D. E. Bergles, J. D. B. Roberts, P. Somogyi, C. E. Jahr, Nature
2000, 405, 187 – 190.
[8] Z. Nusser, N. Hajos, P. Somogyi, I. Mody, Nature 1998, 395, 172 –
177.
[9] G. Segond von Banchet, B. Heppelman, J. Histochem. Cyto-
chem. 1995, 43, 821 – 827.
Angew. Chem. Int. Ed. 2006, 45, 1889 –1891
ꢀ 2006 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
1891