10.1002/anie.202107909
Angewandte Chemie International Edition
COMMUNICATION
Additionally, when the probe compound 3db was subjected to
the optimal reaction conditions, the recovery of the starting
material was observed (Scheme 2c), therefore, demonstrating
that the carbonyl group of substrates is necessary in the current
transformation. These results supported our speculation that the
copper(I)-catalyzed oxaziridination is a vital step in the current
reaction.
Based on the above results and previous literature, a possible
reaction mechanism was proposed, as shown in Scheme 3. First,
CuCl complexed with a BOX-type ligand and then reacted with
AgSbF6 to yield an intermediate, which was stabilized by the
sterically bulky anion BArF to generate the intermediate Int-A.
Subsequently, the substrate 1a reacted with the intermediate
Int-A to release N2 and produce the key active species Cu-
nitrene[1a,16] Int-C through the complex Int-B. The electronic
interactions between the carbonyl group and the copper center
perhaps had a crucial role in this process. Subsequently, Int-D
was generated by asymmetric oxaziridination, resulting in the
origin of the enantiocontrol in this procedure. Then, the three-
Keywords: chiral copper-nitrene • oxaziridination •
rearrangement reaction • Schmidt reaction • bicyclic lactams
[1]
For selective reviews, see: a) H. M. Davies, J. R. Manning, Nature 2008,
451, 417-424; b) Q.-S. Gu, Z.-L. Li, X.-Y. Liu, Acc. Chem. Res. 2020,
53, 170-181; c) Y. Yang, F. H. Arnold, Acc. Chem. Res. 2021, 54, 1209-
1225.
[2]
For selectively references, see: a) I. Nägeli, C. Baud, G. Bernardinelli, Y.
Jacqnier, M. Moran, P. Müller, Helv. Chim. Acta 1997, 80, 1087-1105;
b) D. N. Zalatan, J. Du Bois, J. Am. Chem. Soc. 2008, 130, 9220-9221;
c) E. Milczek, N. Boudet, S. Blakey, Angew. Chem. Int. Ed. 2008, 47,
6825-6828; Angew. Chem. 2008, 120, 6931–6934; d) D. L. Broere, B.
de Bruin, J. N. Reek, M. Lutz, S. Dechert, J. I. van der Vlugt, J. Am.
Chem. Soc. 2014, 136, 11574-11577; e) M. Ju, C. D. Weatherly, I. A.
Guzei, J. M. Schomaker, Angew. Chem. Int. Ed. 2017, 56, 9944-9948;
Angew. Chem. 2017, 129, 10076–10080; f) A. Nasrallah, V. Boquet, A.
Hecker, P. Retailleau, B. Darses, P. Dauban, Angew. Chem. Int. Ed.
2019, 58, 8192–8196; Angew. Chem. 2019, 131, 8276–8280; f) Q. Xing,
C.-M. Chan, Y.-W. Yeung, W.-Y. Yu, J. Am. Chem. Soc. 2019, 141,
3849-3853; g) Z. Zhou, S. Chen, Y. Hong, E. Winterling, Y. Tan, M.
Hemming, K. Harms, K. N. Houk, E. Meggers, J. Am. Chem. Soc. 2019,
141, 19048-19057; h) Z. Zhou, Y. Tan, T. Yamahira, S. Ivlev, X. Xie, R.
Riedel, M. Hemming, M. Kimura, E. Meggers, Chem 2020, 6, 2024-
2034; i) Y. Baek, A. Das, S.-L. Zheng, J. H. Reibenspies, D. C. Powers,
T. A. Betley, J. Am. Chem. Soc. 2020, 142, 11232-11243; j) M. Ju, E. E.
Zerull, J. M. Roberts, M. Huang, I. A. Guzei, J. M. Schomaker, J. Am.
Chem. Soc. 2020, 142, 12930-12936; k) J. Zhang, C. Hou, W. Li, H. Xu,
C. Zhao, Inorg. Chem. Commun. 2020, 114, 107787; l) Y. Dong, C. J.
Lund, G. J. Porter, R. M. Clarke, S.-L. Zheng, T. R. Cundari, T. A.
Betley, J. Am. Chem. Soc. 2021, 143, 817-829. For selective reviews,
see: a) F. Collet, C. Lescot, P. Dauban, Chem. Soc. Rev. 2011, 40,
1926-1936; b) L. Degennaro, P. Trinchera, R. Luisi, Chem. Rev. 2014,
114, 7881-7929; c) W.-T. Wu, Z.-P. Yang, S.-L. You in Asymmetric
Functionalization of C—H Bonds, Vol. 25, RSC Catalysis Series, 2015,
pp. 1-66; d) H. Hayashi, T. Uchida, Eur. J. Org. Chem. 2020, 909–916.
J. Zhang, M. H. Pérez-Temprano, Chimia 2020, 74, 895-903.
membered ring was opened via
a N-O bond cleavage
accompanied by an alkyl C-N 1,2-shift[17] to generate Int-E,
which produced the final product lactam 2a and simultaneously
released the catalyst Int-A for the next catalytic cycle (Scheme
3).
In conclusion, we have developed a novel copper(I)-catalyzed
asymmetric
intramolecular
tandem
oxaziridination/rearrangement reaction. This reaction facilitated
the production of various chiral bicyclic lactams with moderate to
high enantioselectivities under the mild reaction conditions. This
novel reaction could be used to solve practical synthetic
problems associated with the classic asymmetric Schmidt
reaction. Furthermore, it could be useful as a synthetic method
for the discovery of new therapeutics and agrochemicals
composed of lactams. Notably, this study provides novel
information on the asymmetric transformations involving Cu-
nitrene species and their corresponding mechanisms. Further
exploration of these unique Cu-nitrene-catalyzed asymmetric
transformations and their detailed mechanistic investigation is
currently underway.
[3]
[4]
a) P. Wang, H. L. Qin, Z. H. Li, A. L. Liu, G. H. Du, Chin. Chem. Lett.
2007, 18, 152-154; b) A. J. Argüelles, G. A. Cordell, H. Maruenda, Nat.
Prod. Commun. 2016, 11, 57-62; c) T. Nilsu, S. Thorroad, S.
Ruchirawat, N. Thasana, Planta Med. 2016, 82, 1046-1050; d) X.-K.
Luo, J. Cai, Z. Y. Yin, P. Luo, C.-J. Li, H. Ma, N. P. Seeram, Q. Gu, J.
Xu, Org. Lett. 2018, 20, 991-994.
[5]
[6]
A. Stergiou, R. Cantón-Vitoria, M. N. Psarrou, S. P. Economopoulos, N.
Tagmatarchis, Prog. Mater Sci. 2020, 114, 100683.
For selective references, see: a) Y. M. Badiei, A. Krishnaswamy, M. M.
Melzer, T. H. Warren, J. Am. Chem. Soc. 2006, 128, 15056-15057; b) Y.
M. Badiei, A. Dinescu, X. Dai, R. M. Palomino, F. W. Heinemann, T. R.
Cundari, T. H. Warren, Angew. Chem. Int. Ed. 2008, 47, 9961-9964;
Angew. Chem. 2008, 120, 10109–10112; c) M. J. Aguila, Y. M. Badiei,
T. H. Warren, J. Am. Chem. Soc. 2013, 135, 9399-9406; d) K. M.
Carsch, I. M. DiMucci, D. A. Iovan, A. Li, S.-L. Zheng, C. J. Titus, S. J.
Lee, K. D. Irwin, D. Nordlund, K. M. Lancaster, T. A. Betley, Science
2019, 365, 1138-1143; e) K. M. Carsch, J. T. Lukens, I. M. DiMucci, D.
A. Iovan, S.-L. Zheng, K. M. Lancaster, T. A. Betley, J. Am. Chem. Soc.
2020, 142, 2264-2276.
Acknowledgements
We thank the NSFC (No. 21502080, 21772019, 21772076,
21871117, 91956203, and 21971095), the ‘111’ Program of
MOE, the Major Project (2018ZX09711001-005-002) of MOST,
and the STCSM (19JC1430100) and the lzujbky-2020-ct01 for
the financial support.
[7]
For selective references, see: a) D. A. Evans, M. M. Faul, M. T.
Bilodeau, B. A. Anderson, D. M. Barnes, J. Am. Chem. Soc. 1993, 115.
5328-5329; b) Z. Li, R. W. Quan, E. N. Jacobsen, J. Am. Chem. Soc.
1995, 117, 5889-5890; c) K. M. Gillespie, E. J. Crust, R. J. Deeth, P.
Scott, Chem. Commun. 2001, 785-786; d) K. M. Gillespie, C. J.
Sanders, P. O'Shaughnessy, I. Westmoreland, C. P. Thickitt, P. Scott, J.
Org. Chem. 2002, 67, 3450-3458; e) X. Wang, K. Ding, Chem. Eur. J.
2006, 12, 4568-4575; f) S. Hajra, S. M. Akhtar, S. M. Aziz, Chem.
Commun. 2014, 50, 6913-6916.
Crystallographic Data
Crystallographic data generated during this study has been
deposited in the Cambridge Crystallographic Data Centre
(CCDC) under accession numbers CCDC: 2058848 (2a),
2058852 (2c), 2058853 (2e), 2058850 (2f), 2058851 (2i),
2058855 (2k), 2058856 (4a), 2058860 (4c), 2058857 (4g),
2059059 (4i), 2058849 (2m′) and 2059060 (3nc).
[8]
For selective reviews, see: a) V. A. Petrov, G. Resnati, Chem. Rev.
1996, 96, 1809-1824; b) J. Aubé, Chem. Soc. Rev. 1997, 26, 269-277;
c) K. S. Williamson, D. J. Michaelis, T. P. Yoon, Chem. Rev. 2014, 114,
8016-8036. For selective references, see: d) M. Brown, M. Aljarah, H.
4
This article is protected by copyright. All rights reserved.