rate of rotation of an N-Ar “shaft” by varying the
oxidation state of a proximate sulfur atom in 2-[2-(sulfur-
substituted)phenyl]isoindolin-1-ones 1-3. Oxidized sulfur
acts as the braking mode (rotation hindered) while the
reduced [S(II)] counterpart shows “free” rotation. This
approach is attractive because there are numerous high-
yield chemical and electrochemical processes for both
sulfur oxidation to sulfoxide7,8 and sulfoxide deoxygen-
ation to sulfide.9,10 Thus, the processes of applying and
removing the brake are readily reversible, easily control-
lable actions.
A Red ox-Med ia ted Molecu la r Br a k e:
Dyn a m ic NMR Stu d y of
2-[2-(Meth ylth io)p h en yl]isoin d olin -1-on e
a n d S-Oxid ized Cou n ter p a r ts
Parag V. J og, Richard E. Brown, and Dallas K. Bates*
Department of Chemistry, Michigan Technological
University, 1400 Townsend Drive,
Houghton, Michigan 49931
dbates@mtu.edu
Received May 9, 2003
Abstr a ct: A redox-mediated molecular brake based on the
sulfide-sulfoxide redox cycle is illustrated by modulation
of the rotation rate of an N-Ar “shaft” by varying the
oxidation state of sulfur in 2-[2-(sulfur-substituted)phenyl]-
isoindolin-1-ones. N-Ar rotational barriers in methylsulfinyl
(2) and methylsulfonyl (3) derivatives (13.6 kcal mol-1) are
∼5 kcal mol-1 higher than sulfide 1. Rate reduction for N-Ar
rotation is ∼104 s-1 (280 K) upon oxidation. Correlated
N-pyramidalization/N-Ar rotation reduces the effectiveness
of the brake by decreasing the energy barrier to N-Ar bond
rotation.
Simple isoindolin-1-ones exist as enantiomeric rota-
tional isomers with slow rotation about the aryl C-N
bond giving rise to diastereotopic methylene protons.11
Ortho-substitution of the aryl group of 2-phenylisoindo-
lin-1-one with sulfur-containing groups (compounds 1-3)
had a pronounced line broadening effect on methylene
Rotational motion is an integral behavior of molecules.
Controlling these motions in a reproducible fashion is a
key design element for molecular machines. For a mo-
lecular brake,1 an integral component of a molecular
machine, reversibility and hindrance to motion are the
two most important aspects. Recently, organic molecules
designed specifically to achieve certain desired motions
leading to a molecular motor have been reported.2 For
example, a ratcheted “drive shaft” containing intramo-
lecular features which allow rotation of the shaft in only
one direction has been reported,3 and approaches to
intramolecular brakes based upon changes of pH,4 metal
ion concentration,1,5 or coordination number (or oxidation
state of the metal)6 have been disclosed.
1
proton signals in the H NMR spectra (25 °C) (Figure 1)
indicating the sulfur oxidation level dramatically affects
the rate of rotation about the N-Ar bond in these
compounds.
On cooling below -20 °C, the methylene “bump” in
sulfone (3) splits into an AB quartet (∆ν )191.5 Hz and
J AB ) 16.8 Hz at 400 MHz in the absence of exchange)
(7) Chemical methods: (a) Madesclaire, M. Tetrahedron 1986, 42,
5459. (b) Hajipour, A. R.; Mallakpour, S. E.; Adibi, H. J . Org. Chem.
2002, 67, 8666. (c) Bethell, D.; Page, P. C. B.; Vahedi, H. J . Org. Chem.
2000, 65, 6756. (d) Tohma, H.; Takizawa, S.; Watanabe, H.; Fukuoka,
Y.; Maegawa, T.; Kita, Y. J . Org. Chem. 1999, 64, 3519. (e) Yamanoi,
Y.; Imamoto, T. J . Org. Chem. 1997, 62, 8560. (f) Ochiai, M.; Nakanishi,
A.; Ito, T. J . Org. Chem. 1997, 62, 4253. (g) Kakarla, R.; Dulina, R. G.;
Hatzenbuhler, N. T.; Hui, Y. W.; Sofia, M. J . J . Org. Chem. 1996, 61,
8347. (h) Arterburn, J . B.; Nelson, S. L. J . Org. Chem. 1996, 61, 2260.
(i) Aldea, R.; Alper, H. J . Org. Chem. 1995, 60, 8365. (j) Brunel, J .-M.;
Diter, P.; Duetsch, M.; Kagan, H. B. J . Org. Chem. 1995, 60, 8086. (k)
DesMarteau, D. D.; Petrov, V. A.; Montanari, V.; Pregnolato, M.;
Resnati, G. J . Org. Chem. 1994, 59, 2762. (l) Komatsu, N.; Hashizume,
M.; Sugita, T.; Uemura, S. J . Org. Chem. 1993, 58, 4529. (m) Davis,
F. A.; Reddy, R. T.; Han, W.; Carroll, P. J . J . Am. Chem. Soc. 1992,
114, 1428. (n) Davis, F. A.; Thimma R. R.; Weismiller, M. C. J . Am.
Chem. Soc. 1989, 111, 5964. (o) Gasparrini, F.; Giovannoli, M.; Misiti,
D.; Natile, G.; Palmieri, G. J . Org. Chem. 1990, 55, 1323. (p) Davis, F.
A.; Lal, S. G.; Durst, H. D. J . Org. Chem. 1988, 53, 5004. (q) Massa,
A.; Siniscalchi, F. R.; Bugatti, V.; Lattanzi, A.; Scettri, A. Tetrahe-
dron: Asymmetry 2002, 13, 1277. (r) Kim, S. S.; Nehru, K.; Kim, S.
S.; Kim, D. W.; J ung, H. C. Synthesis 2002, 17, 2484. (s) Batigalhia,
F.; Zaldini-Hernandes, M.; Ferreira, A. G.; Malvestiti, I.; Cass, Q. B.
Tetrahedron 2001, 57, 9669. (t) Martin, S. E.; Rossi, L. I. Tetrahedron
Lett. 2001, 42, 7147. (u) Chen, Y.-J .; Huang, Y.-P. Tetrahedron Lett.
2000, 41, 5233. (v) Skarzewski, J .; Ostrycharz, E.; Siedlecka, R.
Tetrahedron: Asymmetry 1999, 10, 3457. (x) Bolm, C.; Dabard, O. A.
G. Synlett 1999, 360. (y) Iwahama, T.; Sakaguchi, S.; Ishii, Y.
Tetrahedron Lett. 1998, 39, 9059. (x) Hashmat A. M.; Bohnert, G. J .
Synthesis 1998, 1238. (z) Hirano, M.; Yakabe, S.; Itoh, S.; Clark, J .
H.; Morimotoa, T. Synthesis 1997, 1161.
We now wish to introduce the concept of an organic-
based redox-mediated molecular brake. The system is
based on the sulfide-sulfoxide redox cycle and is il-
lustrated in a minimalist system by modulation of the
* To whom correspondence should be addressed. Fax: (906) 487
2061. Phone: (906) 487 2059.
(1) Kelly, T. R.; Bowyer, M. C.; Bhaskar, K. V.; Bebbington, D.;
Garcia, A.; Lang, F.; Kim, M. H.; J ette, M. P. J . Am. Chem. Soc. 1994,
116, 3657.
(2) Kelly, T. R.; Silva, R. A.; Silva, H. D.; J asmin, S.; Zhao, Y. J .
Am. Chem. Soc. 2000, 122, 6935.
(3) Kelly, T. R. Acc. Chem. Res. 2001, 34, 514.
(4) (a) Amendola, V.; Fabbrizzi, L.; Mangano, C.; Pallavicini, P.
Struct. Bonding 2001, 99, 79 and references therein. (b) Lee, J . W.;
Kim, K.; Kim, K. Chem. Commun. 2001, 1042. (c) Bergamini, J .-F.;
Belabbas, M.; J ouini, M.; Aeiyach, S.; Lacroix, J .-C.; Chane-Ching, K.
I.; Lacaze, P.-C. J . Electroanal. Chem. 2000, 482, 156.
(5) (a) Stevens, A. M.; Richards, C. J . Tetrahedron Lett. 1997, 38,
7805. (b) Tomohiro, Y.; Stake, A.; Kobuke, Y. J . Org. Chem. 2001, 66,
8442.
(6) (a) Cardenas, D. J .; Livoreil, A.; Sauvage, J .-P. J . Am. Chem.
Soc. 1996, 118, 11980. (b) Collin, J .-P.; Dietrich-Buchecker, C.; Gavina,
P.; J imenez-Molero, M. C.; Sauvage, J .-P. Acc. Chem. Res. 2001, 34,
477. (c) Kalny, D.; Elhabiri, M.; Moav, T.; Vaskevich, A.; Rubinstein,
I.; Shanzer, A.; Albrecht-Gary, A. M. Chem. Commun. 2002, 1426. (d)
Collin, J .-P.; Kern, J . -M.; Raehm, L.; Sauvage, J .-P. Molecular
Switches; Wiley-VCH: New York, 2001; p 249.
(8) Electrochemical methods: (a) Chiba, K.; Yamaguchi, Y.; Tada,
M. Tetrahedron Lett. 1998, 39, 9035. (b) Le Guillanton, G.; Martynov,
A.; Do, Q. T.; Elothmani, D. Electrochim. Acta 2002, 48, 191. (c)
Yamagishi, A.; Aramata, A. J . Electroanal. Chem. 1985, 191, 449.
10.1021/jo034613g CCC: $25.00 © 2003 American Chemical Society
Published on Web 09/26/2003
8240
J . Org. Chem. 2003, 68, 8240-8243