Journal of the American Chemical Society
Communication
allows equilibration to IC, where this steric impediment is
alleviated en route to the C4-substituted product. Thus, we
suggest that for both systems the unexpected product
regioselectivities are determined by the facility of C−N
reductive elimination rather than C−C activation.15
REFERENCES
■
(1) (a) Kappe, C. O. Acc. Chem. Res. 2000, 33, 879. (b) Biggs-Houck,
J. E.; Younai, A.; Shaw, J. T. Curr. Opin. Chem. Biol. 2010, 14, 371.
(2) (a) Lam, P. Y. S.; Jadhav, P. K.; Eyermann, C. J.; Hodge, C. N.;
Ru, Y.; Bacheler, L. T.; Meek, J. L.; Otto, M. J.; Rayner, M. M.; Wong,
Y. N.; Chang, C.-H.; Weber, P. C.; Jackson, D. A.; Sharpe, T. R.;
Erickson-Viitanen, S. Science 1994, 263, 380.
(3) Blizzard, T. A.; Chen, H.; Kim, S.; Wu, J.; Bodner, R.; Gude, C.;
Imbriglio, J.; Young, K.; Park, Y.-W.; Ogawa, A.; Raghoobar, S.;
Hairston, N.; Painter, R. E.; Wisniewski, D.; Scapin, G.; Fitzgerald, P.;
Sharma, N.; Lu, J.; Ha, S.; Hermes, J.; Hammond, M. L. Bioorg. Med.
Chem. Lett. 2014, 24, 780.
Why does the presence or absence of an R1-substituent
control selectivity for C4−C5 unsaturated or saturated
products (8 vs 9) (Scheme 4D)? Preliminary studies indicate
that the conversion of II to 8 occurs in both cases, but this is
reversible for R1 = H allowing eventual protodemetalation to 9.
Cyclization of deuterio-cis-5v provided deuterio-9v′, where
deuterium transfer from the urea to both diastereotopic C5
positions supports reversible β-hydride elimination and alkene
dissociation (to 8)16 in advance of irreversible protodemetala-
tion (to 9); incomplete deuterium transfer may be due to
exchange with protic impurities (e.g., H2O) prior to C−H
formation. For systems lacking a C4-substituent, isomerization
along the ring occurs prior to protodemetalation; cyclization of
deuterio-5l generated deuterio-9l, where deuterium incorpora-
tion was observed at C3, C4, and C5. Heterocyclization to 8 is
oxidative, and we speculate that the active Rh(I) species is
regenerated by protonation triggered reductive elimination of
dihydrogen; this process is known for related systems.8,17
Presumably, the PhCO2H additive acts as a proton reservoir for
both pathways, which otherwise would be reliant solely on the
proton released by conversion of 6 to 7 (see Scheme 1C).
In summary, we demonstrate an approach to substituted 1,3-
diazepanes as proof-of-concept for a general metallacycle
“capture−collapse” strategy. We anticipate that the strategy
will allow the generation of a range of medium ring systems
containing multiple heteroatoms; studies toward this broad goal
are underway.18 The findings described here enhance
significantly the scope of the catalysis platform outlined in
Scheme 1B (1 to 2), opening up numerous avenues for further
exploration, while at the same time adding to the wider and
emerging area of rhodacyclopentanone-based catalysis.7,8,19
(4) Meragelman, K. M.; McKee, T. C.; McMahon, J. B. J. Nat. Prod.
2004, 67, 1165.
(5) Selected methodologies to 1,3-diazepanes: (a) Anumandla, D.;
Littlefield, R.; Jeffrey, C. S. Org. Lett. 2014, 16, 5112. (b) Kim, M.;
Gajulapati, K.; Kim, C.; Jung, H. Y.; Goo, J.; Lee, K.; Kaur, N.; Kang,
H. J.; Chung, S. J.; Choi, Y. Chem. Commun. 2012, 48, 11443.
(c) Dutta, S.; Higginson, C. J.; Ho, B. T.; Rynearson, K. D.; Dibrov, S.
M.; Hermann, T. Org. Lett. 2010, 12, 360. (d) Zhou, H.-B.; Alper, H. J.
Org. Chem. 2003, 68, 3439. (e) Hylton, K.-G.; Main, A. D.; McElwee-
White, L. J. Org. Chem. 2003, 68, 1615. (f) McReynolds, M. D.; Sprott,
K. T.; Hanson, P. R. Org. Lett. 2002, 4, 4673.
(6) Bauer, R. A.; Wenderski, T. A.; Tan, D. S. Nat. Chem. Biol. 2012,
9, 21.
(7) (a) Shaw, M. H.; Melikhova, E. Y.; Kloer, D. P.; Whittingham, W.
G.; Bower, J. F. J. Am. Chem. Soc. 2013, 135, 4992. (b) Shaw, M. H.;
McCreanor, N. G.; Whittingham, W. G.; Bower, J. F. J. Am. Chem. Soc.
2015, 137, 463. (c) Shaw, M. H.; Croft, R. A.; Whittingham, W. G.;
Bower, J. F. J. Am. Chem. Soc. 2015, 137, 8054. (d) Shaw, M. H.;
Whittingham, W. G.; Bower, J. F. Tetrahedron 2016, 72, 2731.
(8) Murakami, M.; Tsuruta, T.; Ito, Y. Angew. Chem., Int. Ed. 2000,
39, 2484.
(9) A one-pot synthesis of 9l (57% yield, 6:1 saturated:unsaturated)
(10) Cyclization of (S,S)-trans-5s (>98% ee) provided (S)-8s in
(11) Replacement of the n-butyl group with methyl or cyclohexyl
substituents gave analogous results (see the SI).
(12) The relative stereochemistry of 1,2-disubstituted cyclopropane
substrates was determined using a combination of X-ray crystallo-
graphic analysis (trans-5s) and NOE experiments.
(13) Similar results were obtained in the presence of PhCO2H (15
mol%). The SI details analogous experiments for carbamate protected
systems, confirming that C−C activation selectivity is the same in the
absence and presence of CO.
ASSOCIATED CONTENT
■
S
* Supporting Information
The Supporting Information is available free of charge on the
Experimental details, characterization data (PDF)
(14) For the conversion of trans-5v to 8v′, β-hydride elimination
presumably occurs via N6-H.
(15) Alternate explanations cannot be discounted on the basis of
available data. For example, the steric effects of the R3-group may
result in slow formation of ID, rather than slow reductive elimination
from this intermediate.
(16) The suggestion that the alkene dissociates assumes stereo-
specific protodemetalation.
AUTHOR INFORMATION
■
Corresponding Author
Author Contributions
(17) Gridnev, I. D.; Higashi, N.; Asakura, K.; Imamoto, T. J. Am.
Chem. Soc. 2000, 122, 7183.
†N.G.McC. and S.S. contributed equally.
(18) By the strictest (IUPAC) definition, 7-ring systems are not
classed as medium rings. However, the chemistry described here is an
important conceptual stepping stone towards this goal because
conventional 7-ring cyclizations are, in terms of kinetics, significantly
more demanding than 5- or 6-ring variants: Illuminati, G.; Mandolini,
L.; Masci, B. J. Am. Chem. Soc. 1975, 97, 4960.
(19) (a) Review: Shaw, M. H.; Bower, J. F. Chem. Commun. 2016,
X.; Dong, G. J. Am. Chem. Soc. 2015, 137, 13715. (c) Ko, H. M.; Dong,
G. Nat. Chem. 2014, 6, 739. (d) Souillart, L.; Parker, E.; Cramer, N.
Angew. Chem., Int. Ed. 2014, 53, 3001. (e) Souillart, L.; Cramer, N.
Angew. Chem., Int. Ed. 2014, 53, 9640. (f) Matsuda, T.; Tsuboi, T.;
Murakami, M. J. Am. Chem. Soc. 2007, 129, 12596.
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
European Research Council via the EU’s Horizon 2020
Programme (ERC grant 639594 CatHet). Bristol Chemical
Synthesis Centre for Doctoral Training (EPSRC grant EP/
G036764/1) for a studentship (N.G.M). University of Bristol
X-ray crystallographic service for analysis of trans-5s, 10j, and
10k. Royal Society for a University Research Fellowship
(J.F.B.).
D
J. Am. Chem. Soc. XXXX, XXX, XXX−XXX