Tetrahedron Letters
4
Interestingly, during the course of the purification of
halohydrin 7a by silica gel column chromatography, lactone
17 was isolated in 20% yield. This silica gel assisted
lactonization of 7a is probably due to the favored
conformational orientation of 7a via hydrogen bonding
between the carbonyl carbon of ethyl ester and the hydroxyl
group, which favors the intramolecular lactonization. The
halohydrin 7b has failed to yield the lactone 18 even after
stirring 7b with silica gel in various percentage of hexane
and ethyl acetate mixture (Scheme 5) on prolonged time, as
well as at elevated temperature.
synthesis of densely functionalized diverse products is
under progress and will report in due course of time.
Acknowledgments
The authors would like to thank Dr. Vilas Dahanukar of Dr.
Reddy’s Laboratories for useful discussions. We also thank
the analytical department, Dr. Reddy’s Laboratories, for
providing the analytical support.
References and notes
Cl
Cl
1. (a) Kaeothip, S.; Ishiwata, A.; Ito Y. Org. Biomol. Chem. 2013, 11,
5892-5907; (b) Shinohara, H.; Matsubayashi, Y. Plant Cell Physiol.
2013, 54, 369-374; (c) Wakamiya, T.; Yamanoi, K.; Kanou, K.; Shiba,
T. Tetrahedron Lett. 1987, 28, 5887-5888.
O
O
Silica gel
O
O
Bn
H
N
N
EtO
7a
Bn
2. (a) Pippel, D. J.; Young L. K.; Letavic, M. A.; Ly, K. S.; Naderi, B.;
Soyode-Johnson, A.; Stocking, E. M.; Carruthers, N. I.; Mani, N. S. J.
Org. Chem. 2010, 75, 4463-4471; (b) Thottathil, J. K.; Moniot, J. L.
Tetrahedron Lett. 1986, 27, 151-154; (c) Kronenthal, D. R.; Mueller,
R. H.; Kuester, P. L.; Kissick, T. P.; Johnson, E. J. Tetrahedron Lett.
1990, 31, 1241-1244.
17
Cl
Cl
Cl
O
O
EtOOC
O
O
N
O
N
Silica gel
O
O
O
O
N
EtO
H
H
3. (a) Ducho, C.; Hamed, R. B.; Batchelar, E. T.; Sorensen, J. L.; Odell,
B.; Schofield, C. J. Org. Biomol. Chem. 2009, 7, 2770-2779; (b)
Remuzon, P. Tetrahedron, 1996, 52, 13803-13835.
Boc
7b
7b
18
4. Suzuki, R.; Tojo, Y.; Mizumoto, C.; Hasegawa, K.; Ashida, Y.; Hosoi,
Jun-ichi.; Sato, K, US20120122951 A1.
Scheme 5. The lactonization of chlorohydrin 7a
The ethyl (2R,4R)-1-benzyl-4-hydroxypyrrolidine-2-
carboxylate 5a was then converted to (2R, 4R)-4-hydroxy-
proline (1) by debenzylation with Pd(OH)2 followed by
hydrolysis of ester with aqueous sodium hydroxide in 80%
yield (Scheme 6) over two steps. The SOR, spectral and
5. (a) Wieland, H.; Witkop, B. Liebigs. Ann. Chem. 1940, 543, 171-183;
(b) Yu M.; Deming, T. J. Macromolecules, 1998, 31, 4739-4745; (c)
Ohtani, I.; Kusumi, T.; Kakisawa, H.; Kashman, Y.; Hirsh S. J. Am.
Chem. Soc. 1992, 114, 8472-8479.
6. Irreverre, F.; Morita, K.; Robertson, A. V.; Witkop, B. J. Am. Chem.
Soc. 1963, 85, 2824-2831.
7. Leuchs H., Berlin. 1905, 38, 1937-1943.
8. Roberson, A.V.; Katz, E.; Witkop, B. J. Org. Chem. 1962, 27, 2676-
2677.
analytical
carboxylic acid 1 thus obtained is identical to the values
data of
(2R,4R)-4-hydroxypyrrolidine-2-
9. Papaioannou, D.; Stavropoulos, G.; Kargiannis, K.; Francis, G. W.;
Brekke, T.; Aksnes, D. W. Acta Chem. Scand. 1990, 44, 243-251.
10. (a) Seki, M.; Matsumoto, K. Biosci. Biotech. Biochem. 1995, 59, 1161-
1162; (b) Madau, A.; Porzi, G.; Sandri, S. Tetrahedron: Asymmetry,
1996, 7, 825-830.
reported in the literature.
HO
HO
1. Pd(OH)2 / MeOH
11. Mehlfuhrer, M.; Berner, H.; Thirring, K. J. Chem. Soc., Chem.
Commun. 1994, 1291.
OH
OEt
N
H
N
2. NaOH/Water/EtOH
12. Kober, R.; Papadopoulos, K.; Miltz, W.; Enders, D.; Steglish, W.;
Reuter, H.; Puff, H. Tetrahedron, 1985, 41, 1693-1701.
13. Graziani, L.; Porzi, G.; Sandri, S. Tetrahedron: Asymmetry 1996, 1341-
1346.
O
O
Bn
1
5a
Scheme 6. Synthesis of (2R, 4R)-4-hydroxy-proline (1)
14. (a) Burger, K.; Rudolph, M.; Fehn, S. Angew. Chem. Int. Ed. Engl.
1993, 32, 285-287; (b) Mereyala, H. B.; Pathuri, G.; Nagarapu, L.
Synthetic Comm. 2012, 42, 1278-1287.
In a similar way, (2S,4S)-4-hydroxypyrrolidine-2-carboxylic
acid 2 was also synthesized in high de (99.5%) in moderate
yields starting from (R)-epichlorohydrin 8b and glycine
ester 9a as described in Scheme 7.
15. (a) Sigmund, A. E.; Hong, W.; Shapiro, R.; Dicosimo, R. Adv. Synth.
Catal. 2001, 343, 587-590; (b) Christian, K.; Wolfgang, H. Beilstein J.
Org. Chem. 2011, 7, 1643-1647.
16. Kimura, R.; Nagano, T.; Kinoshita, H. Bull. Chem. Soc. Jpn, 2002, 75,
2517-2525.
HO
17. (a) Srinivasan, A. K.; Shyamapada, B.; Syam Kumar, U. K, Org.
Biomol. Chem. 2014, 12, 6105-6113 (b) Suresh Babu, M.;
Ramamohan, M.; Raghunadh, A.; Raghavendra Rao, K.; Vilas H.
Dahanukar, Pratap, T. V.; Syam Kumar, U. K.; Dubey P. K. Tet Lett,
O
O
HN
Bn
OH
+
Cl
O
N
H
O
2014, 55, 4739-4741
(c) Raghunadh, A.;
Suresh Babu, M.;
9a
8b
2
Ramamohan, M.; Raghavendra Rao, K.; Krishna, T.; Gangadhara
Chary, R.; Rao, V. L.; Syam Kumar U. K. Tet Lett, 2014, 55, 2986-
2990 (d) Sandip. R. K.; Vikas, S. G.; Subbarao, J.; Syam Kumar U. K.;
Y. L. N. Murthy, Tet Lett, 2013, 54, 2909-2912 (e) Shankar, R.; More,
Satish S.; Madhubabu, M. V.; Vembu, N.; Syam Kumar, U. K. Synlett,
2012, 23, 1013–1020 (f) Raghunadh, A.; Suresh Babu, M.; Anil
Kumar, N.; Santosh, G.; Rao, V.L.; SyamꢀKumar, U. K. Synthesis,
2012, 44, 283–289 (g) Shankar, R.; Manoj, B. W.; Madhubabu, M. V.;
Vembu, N.; Syam Kumar, U. K. Synlett, 2011, 6, 844–0848 (h) Manoj
B. W.; Shankar, R.; Syam Kumar U. K.; Gill, C. H. Synlett, 2011, 1,
84–88 (i) Shanmugapriya, D.; Shankar, R.; Satyanarayana, G.; Vilas,
H. D.; Syam Kumar, U. K.; Vembu, N. Synlett, 2008, 19, 2945–2950
18. Kolaczkowski, L.; Barnes, D. M. Org. Lett. 2007, 9, 3029-3032.
Scheme 7. Synthesis of (2S, 4S)-4-hydroxy-proline (2)
In conclusion, a concise and highly diastereoselective
synthesis of (2R,4R)-4-hydroxyprolineand (2S,4S)-4-
hydroxyprolinein high de have been developed from readily
accessible starting materials in moderate yields. The high de
observed in the synthesis of cis 4-hydroxyproline is
probably due to the highly chelated complex formed during
the exo tet ring closure process, as well as via the
stabilization of the enolate by coordinating solvent. The
application of this methodology for the diastereoselective