1796
S. Rehn et al.
PAPER
(4) (a) Cai, J.; Davies, A. G. J. Chem. Soc., Perkin Trans. 2
1992, 1743. (b) Davies, A. G.; Kinart, W. J. J. Chem. Soc.,
Perkin Trans. 2 1993, 2281. (c) Kinart, W. J. Chem. Res.,
Synop. 1994, 486. (d) Brimble, M. A.; Heathcock, C. H.;
Nobin, G. N. Tetrahedron: Asymmetry 1996, 7, 2007.
(e) Vassilikogiannakis, G.; Stratakis, M.; Orfanopoulos, M.;
Foote, C. S. J. Org. Chem. 1999, 64, 4130. (f) Adam, W.;
Bottke, N.; Krebs, O.; Lykakis, I.; Orfanopoulos, M.;
Stratakis, M. J. Am. Chem. Soc. 2002, 124, 14403.
(5) (a) Leblanc, Y.; Zamboni, R.; Bernstein, M. A. J. Org.
Chem. 1991, 56, 1971. (b) Brimble, M. A.; Heathcock, C. H.
J. Org. Chem. 1993, 58, 5261. (c) Gau, A.-H.; Lin, G.-L.;
Uang, B.-J.; Liao, F.-L.; Wang, S.-L. J. Org. Chem. 1999,
64, 2194. (d) Adam, W.; Pastor, A.; Wirth, T. Org. Lett.
2000, 2, 1295.
(6) Ofial, A. R.; Mayr, H. J. Org. Chem. 1996, 61, 5823.
(7) Ofial, A. R.; Mayr, H. Angew. Chem., Int. Ed. Engl. 1997,
36, 143; Angew. Chem. 1997, 109, 145.
(8) For a Ni-catalyzed three-component synthesis of allylamines
from alkynes, imines, and organoboron reagents, see: Patel,
S. J.; Jamison, T. F. Angew. Chem. Int. Ed. 2003, 42, 1364;
Angew. Chem. 2003, 115, 1402.
indicates, however, that the presence of SnCl62– ( = –733
ppm) can be ruled out: Wrackmeyer, B. Ann. Rep. NMR
Spectroscopy 1986, 16, 73.
(16) Mannich, C.; Chang, F. T. Ber. Dtsch. Chem. Ges. 1933, 66,
418.
(17) For the formation of allenylamines from iminium ions and
propargylsilanes, see: (a) Damour, D.; Pornet, J.;
Randrianoelina, B.; Miginiac, L. J. Organomet. Chem. 1990,
396, 289. (b) Agami, C.; Bihan, D.; Hamon, L.; Kadouri-
Puchot, C.; Lusinchi, M. Eur. J. Org. Chem. 1998, 2461.
(c) Tietze, L. F.; Wünsch, J. R.; Noltemeyer, M. Tetrahedron
1992, 48, 2081.
(18) (a) List, B. Tetrahedron 2002, 58, 5573. (b) Arend, M.;
Westermann, B.; Risch, N. Angew. Chem. Int. Ed. 1998, 37,
1044; Angew. Chem. 1998, 110, 1096. (c) Kleinmann, E. F.
In Comprehensive Organic Synthesis, Vol. 2; Trost, B. M.;
Fleming, I.; Heathcock, C. H., Eds.; Pergamon: Oxford,
1991, 893. (d) Heaney, H. In Comprehensive Organic
Synthesis, Vol. 2; Trost, B. M.; Fleming, I.; Heathcock, C.
H., Eds.; Pergamon: Oxford, 1991, 953–973.
(e) Tramontini, M.; Angiolini, L. Tetrahedron 1990, 46,
1791.
(9) For a Ti-promoted asymmetric synthesis of allylamines from
arylimines and alkynes, see: Fukuhara, K.; Okamoto, S.;
Sato, F. Org. Lett. 2003, 5, 2145.
(10) For a synthesis of allylamines from iminium ions and
vinylsilanes, see: Yahiro, S.; Shibata, K.; Saito, T.; Okauchi,
T.; Minami, T. J. Org. Chem. 2003, 68, 4947.
(11) (a) Stewart, T. D.; Bradley, W. E. J. Am. Chem. Soc. 1932,
54, 4172. (b) Knoll, F.; Krumm, U. Chem. Ber. 1971, 104,
31. (c) Rochin, C.; Babot, O.; Dunoguès, J.; Duboudin, F.
Synthesis 1986, 228.
(12) Enders, D.; Ward, D.; Adam, J.; Raabe, G. Angew. Chem.,
Int. Ed. Engl. 1996, 35, 981; Angew. Chem. 1996, 108, 1059.
(13) For the spectroscopic characterization, the precipitated
iminium salt 2 was filtered off, washed with a 1:1 mixture of
Et2O and CH2Cl2, and dried in vacuo (yield: 93%). 1H NMR
(CD3CN, 300 MHz): = 5.02 (s, 4 H, PhCH2), 7.34–7.40
(m, 4 H, C6H5), 7.45–7.54 (m, 6 H, C6H5), 7.95 (t, JHN = 1
Hz, 2 H, N+=CH2). 13C NMR (CD3CN, 75.5 MHz):
= 63.69 (t, PhCH2), 130.31, 130.47, 131.10 (3 d, C6H5),
131.17 (s, C6H5), 169.71 (t, JCN = 11.2 Hz, N+=CH2). 119Sn
NMR (CD3CN, 100.7 MHz): = –673 (m).
(19) Rehn, S. Ph. D. Dissertation; Ludwig-Maximilians-
Universität München: Germany, 2001.
(20) (a) Lambert, J. B. Tetrahedron 1990, 46, 2677.
(b) Gabelica, V.; Kresge, A. J. J. Am. Chem. Soc. 1996, 118,
3838.
(21) Mayr, H.; Kuhn, O.; Schlierf, C.; Ofial, A. R. Tetrahedron
2000, 56, 4219.
(22) Pock, R.; Mayr, H. Chem. Ber. 1986, 119, 2497.
(23) (a) Neunhoeffer, H.; Franke, W. K. In Houben–Weyl,
Offenkettige und Cyclische Polyene En-ine, 4th ed., Vol. V/
1d; Müller, E., Ed.; Georg Thieme: Stuttgart, 1972, 609–
696. (b) Carothers, W. H.; Coffman, D. D. J. Am. Chem. Soc.
1932, 54, 4071. (c) Hamlet, J. C.; Henbest, H. B.; Jones, E.
R. H. J. Chem. Soc. 1951, 2652.
(24) Pawlenko, S. In Houben–Weyl, Organo-Silicium
Verbindungen, 4th ed., Vol. XIII/5; Bayer, O.; Müller, E.,
Eds.; Georg Thieme: Stuttgart, 1980, 45–50.
(25) (a) Jackson, W. R.; Perlmutter, P.; Smallridge, A. J. Aust. J.
Chem. 1988, 41, 251. (b) Gilly, C.; Taillander, G.; Péra, M.
H.; Luu-Duc, C.; Demenge, P.; de Catanho, M. T. Eur. J.
Med. Chem. 1997, 32, 365. (c) Heilmann, R.; Glenat, R.; de
Gaudemaris, G. Bull. Soc. Chim. Fr. 1952, 284.
(26) (a) Jun, C.-H.; Crabtree, R. H. J. Organomet. Chem. 1993,
447, 177. (b) Labaudinière, L.; Hanaizi, J.; Normant, J.-F. J.
Org. Chem. 1992, 57, 6903.
(14) Mayr, H.; Ofial, A. R.; Würthwein, E.-U.; Aust, N. C. J. Am.
Chem. Soc. 1997, 119, 12727.
(15) The nature of the SnCl5– counterions in solution has not been
established. X-ray and vibrational spectra of other
‘pentachlorostannates’ have shown that SnCl5– may exist,
but evidence for the presence of Sn2Cl102– has also been
reported: (a) For X-ray analyses, see: Bryan, R. F. J. Am.
Chem. Soc. 1964, 86, 733. (b) Shamir, J.; Luski, S.; Bino,
A.; Cohen, S.; Gibson, D.Inorg. Chem. 1985, 24, 2301.
(c) For an analysis of vibrational spectra, see: Creighton, J.
A.; Green, J. H. S. J. Chem. Soc. A 1968, 808. (d) For a
report on Sn2Cl102–, see: Baaz, M.; Gutmann, V.; Kunze, O.
Monatsh. Chem. 1962, 93, 1142. (e) The observed 119Sn
NMR chemical shift of = –673 ppm for the iminium salt 2
(27) Ogoshi, S.; Nishiguchi, S.; Tsutsumi, K.; Kurosawa, H. J.
Org. Chem. 1995, 60, 4650.
(28) Reactions at temperatures above the boiling points of
volatile enophiles were carried out in a pressure tube that
was equipped with a magnetic stir bar, sealed with a screw
cap and heated in an aluminum block on the heating platform
of a magnetic stirrer.
Synthesis 2003, No. 12, 1790–1796 © Thieme Stuttgart · New York