5
6.85–7.59 (aromatics); 6.55, 6.19 (d, h -CH); 2.91, 2.31 (s, NMe2); 1.64,
5
1.44 (s, CMe3). 13C NMR (C6D6, 25 °C): d 171.0 (Zr–O–C); 95.5 (h -CH).
5
For 6(p-S,S): 1H NMR (C6D6, 25 °C): d 6.65–8.25 (aromatics); 5.44 (d, h -
CH); 1.35, 1.32 (s, CMe3); 0.42, 0.29 (s, SiMe3). 13C NMR (C6D6, 25 °C):
5
d 173.1, 165.6, 156.6 (Ti–O–C); 106.3 (h -CH). For 7(p-S,S): 1H NMR
(C6D6, 25 °C): d 6.49–8.16 (aromatics); 2.27, 1.62 (s, CH3); 1.35, 1.22 (s,
CMe3); 0.49, 0.28 (s, SiMe3). 13C NMR (C6D6, 25 °C): d 173.2, 163.8, 160.7
5
(Ti–O–C); 100.3 (h -CMe). (p-R, S): 1H NMR (C6D6, 25 °C): d 5.81–7.96
(aromatics); 2.24, 1.59 (s, CH3); 1.47, 1.33 (s, CMe3); 0.46, 0.16 (s, SiMe3).
5
13C NMR (C6D6, 25 °C): d 173.0, 168.7, 156.9 (Ti–O–C); 108.1 (h -CMe).
5
For 8(p-R,R): 1H NMR (C6D6, 25 °C): d 6.53–8.28, (aromatics); 5.59 (s, h -
CH); 3.57 (s, O–CH2–CH2); 1.39 (s, O–CH2–CH2); 1.35, 1.26 (s, CH3);
1.35 (s), 1.22 (s, CMe3); 0.49 (s), 0.36 (s, SiMe3). Selected 13C NMR (C6D6,
5
25 °C): d 171.9, 160.7 (Zr–O–C); 99.4 (h -CH).
§ Crystal data: For 3 at 150 K: C27H38N2OTi, M = 454.52, space group
P21/n (No. 14), a = 12.4594(3), b = 11.7575(3), c = 18.0226(4) Å, b =
108.1734(13)°, V = 2508.5(2) Å3, dcalc = 1.203 g cm23, Z = 4. Of the 5700
unique reflections collected (5 5 q 5 27°) with Mo–Ka (l = 0.71073 Å),
Fig. 2 Selected bond distances (Å) and angles (°) for (p-S,S)-7: Ti–O(1)
1.864(2), Ti–O(2) 1.862(2), Ti–O(3) 1.866(2), Ti–C(11) 2.310(3), Ti–C(12)
2.318(3), Ti–C(13) 2.361(3), Ti–C(14) 2.522(3), Ti–C(19) 2.472(3), O(1)–
Ti–O(2) 96.91(9), O(2)–Ti–O(3) 102.09(9), O(1)–Ti–O(3) 115.72(9).
2
the 5694 with Fo > 2.0 s (Fo2) were used in the final least-squares
refinement to yield R
= 0.041 and RW = 0.099. For 4 at 150 K:
C29H42N2OTi, M = 482.57, space group P21/c (No. 14), a = 10.0202(2),
b = 13.0802(3), c = 22.0926(4) Å, b = 102.3111(13)°, V = 2829.01(19)
Å3, dcalc = 1.133 g cm23, Z = 4. Of the 6044 unique reflection collected
2
(5 5 q 5 27°) with Mo–Ka (l = 0.71073 Å), the 6040 with Fo > 2.0 s
(Fo2) were used in the final least-squares refinement to yield R = 0.061 and
¯
RW = 0.160. For 5 at 150 K: C27H38N2OZr, M = 497.84, space group P1
(No. 2), a = 12.9534(3), b = 14.0719(4), c = 15.2631(4) Å, V = 2589.5(2)
Å3, dcalc = 1.277 g cm23, Z = 4. Of the 11660 unique reflections collected
2
(5 5 q 5 27°) with Mo–Ka (l = 0.71073 Å), the 9145 with Fo > 2.0 s
(Fo2) were used in the final least-squares refinement to yield R = 0.053 and
RW = 0.136. For 6 at 150 K: C49H54O3Si2Ti, M = 795.05, space group P21
(No. 4), a = 11.9436(10), b = 13.1268(10), c = 16.1538(12) Å, b =
102.861(4)°, V = 2469.1(6) Å3, dcalc = 1.069 g cm23, Z = 2. Of the 7600
unique reflections collected (5 5 q 5 25°) with Mo–Ka (l = 0.71073 Å),
2
the 7586 with Fo > 2.0 s (Fo2) were used in the final least-squares
refinement to yield R
= 0.087 and RW = 0.187. For 7 at 150 K:
C
49H54O3Si2Ti, M = 823.10, space group P21 (No. 4), a = 12.0012(4), b
= 13.6234(5), c = 16.3611(6) Å, b = 105.5417(14)°, V = 2577.2(3) Å3,
dcalc = 1.061 g cm23, Z = 2. Of the 10232 unique reflection collected (5
5 q 5 30°) with Mo–Ka (l = 0.71073 Å), the 10199 with Fo > 2.0 s (Fo
Fig. 3 Selected bond distances (Å) and angles (°) for (p-R,R)-8: Zr–O(1)
2.100(3), Zr–O(2) 2.017(3), Zr–O(3) 2.095(3), Zr–O(4) 2.387(3), Zr–O(5)
2.356(3), Zr–C(11) 2.531(4), Zr–C(12) 2.511(4), Zr–C(13) 2.564(4), Zr–
C(14) 2.723(4), Zr–C(19) 2.696(4), O(1)–Zr–O(2) 99.1(1), O(2)–Zr–O(3)
92.6(1), O(1)–Zr–O(3) 150.5(1), O(2)–Zr–O(5) 82.25(12), O(3)–Zr–O(5)
76.0(1), O(1)–Zr–O(5) 78.8(1), O(2)–Zr–O(4) 159.0(1), O(3)–Zr–O(4)
79.2(1), O(1)–Zr–O(4) 80.3(1), O(5)–Zr–O(4) 77.1(1).
2
2
)
were used in the final least-squares refinement to yield R = 0.053 and RW
= 0.148. For 8*C7H8*C4H8O at 150 K: C68H86O6Si2Zr, M = 1146.83,
space group P212121 (No. 19), a = 12.5231(3), b = 19.2231(4), c =
25.9127(6) Å, V = 2964.61(10) Å3, dcalc = 1.221 g cm23, Z = 4. Of the
12567 unique reflections collected (5 5 q 5 26°) with Mo–Ka (l =
2
0.71073 Å), the 12553 with Fo > 2.0 s (Fo2) were used in the final least-
squares refinement to yield R = 0.063 and RW = 0.136. Flack parameters:
compound 6, 0.04(5); compound 7, 20.01(2); compound 8, 0.03(4). CCDC
b212724e/ for crystallographic data in .cif or other electronic format.
diastereoisomers. It has proven difficult to isolate crystalline
products from hydrocarbon solvents. However, use of THF was
found to lead to crystals of a new compound 8 shown to contain
a pseudo-octahedral zirconium metal center (Figure 3). Inter-
estingly 8 can be seen to contain a p-R chelated indenyl-
phenoxide and two, cis-coordinated THF molecules along with
the (R)-binol ligand. It is also important to note that the indenyl
1 R. Beckhaus, in Metallocenes, ed. A. Togni and R. L. Halterman, Wiley-
VHC, Weinheim, 1998, p. 153; E.-I. Negishi and J. Montchamp, in
Metallocenes, ed. A. Togni and R. L. Halterman, Wiley-VHC, Wein-
heim, 1998, p. 241.
2 A. L. McKnight and R. M. Waymouth, Chem. Rev., 1998, 98, 2587; R. L.
Halterman, Chem. Rev., 1992, 92, 965; J. Okuda, Topics Curr. Chem.,
1991, 160, 99; C. Janiak and H. Schumann, Adv. Organomet. Chem.,
1991, 33, 291.
3
ring is only h -bound in the solid state of 8, with significant
elongation of the Zr–C(aromatic) distances (Figure 3). A similar
bonding mode is also seen in 7 (Figure 2) whereas the indenyl
5
ring in 3 (Figure 1) more closely approaches h -coordination.
We thank the National Science Foundation (Grant CHE-
0078405) for financial support of this research.
3 M. G. Thorn, P. E. Fanwick, R. W. Chesnut and I. P. Rothwell, Chem.
Commun., 1999, 2543.
4 Zr(NMe2)4 was prepared using the procedure outlined by G. M. Diamond
and R. F. Jordan, Organometallics, 1995, 14, 5.
5 F. R. W. P. Wild, J. Zsolnai, G. Huttner and H. H. Brintzinger, J.
Organomet. Chem., 1982, 232, 233; B. Chin and S. L. Buchwald, J. Org.
Chem., 1996, 61, 5650.
6 G. M. Diamond, S. Rodewald and R. F. Jordan, Organometallics, 1995,
14, 5; G. M. Diamond and R. F. Jordan, Organometallics, 1996, 15, 4030;
G. M. Diamond, R. F. Jordan and J. L. Petersen, J. Am. Chem. Soc., 1996,
118, 8024.
Notes and references
‡
Selected spectroscopic data. For 3: 1H NMR (C6D6, 25 °C): d
5
6.75–7.61 (aromatics); 6.43, 6.33 (d, h -CH); 3.27, 2.49 (s, NMe2); 1.68,
1.44 (s, CMe3). 13C NMR (C6D6, 25 °C): d 172.5 (Ti–O–C); 101.3 (h -CH).
5
For 4: 1H NMR (C6D6, 25 °C): d 6.81–7.60 (aromatics); 3.11, 2.59 (s,
NMe2); 2.22, 1.99 (s, CH3); 1.65, 1.44 (s, CMe3). 13C NMR (C6D6, 25 °C):
5
d 172.2 (Ti–O–C); 108.1 (h -CMe). For 5: 1H NMR (C6D6, 25 °C): d
CHEM. COMMUN., 2003, 1034–1035
1035