3 D. P. Curran, Synthesis, 1988, 417–439; D. P. Curran, Synthesis, 1988,
489–513; T. R. Rheault and M. P. Sibi, Synthesis, 2003, 803–819.
4 S. Danishefsky, Acc. Chem. Res., 1981, 14, 400–406; E. Marsault, A.
Toró, P. Nowak and P. Deslongchamps, Tetrahedron, 2001, 57,
4243–4260; E. J. Corey, Angew. Chem., Int. Ed., 2002, 41, 1650–1667;
K. C. Nicolaou, S. A. Snyder, T. Montagnon and G. Vassilikogiannakis,
Angew. Chem., Int. Ed., 2002, 41, 1668–1698.
5 K. P. C. Vollhardt, Angew. Chem., Int. Ed., 1984, 23, 539–556; M.
Lautens, W. Klute and W. Tam, Chem. Rev., 1996, 96, 49–92; B. M.
Trost and M. J. Krische, Synlett, 1998, 1–16; A. Fürstner, Angew.
Chem., Int. Ed., 2000, 39, 3012–3043; T. Trnka and R. H. Grubbs, Acc.
Chem. Res., 2001, 34, 18–29.
6 E. N. Marvell, Thermal Electrocyclic Reactions, Academic Press, New
York, 1980 (vol. 43 of Organic Chemistry, a series of monographs, ed.
H. H. Wasserman); W. H Okamura and A. R. De Lera, in Compre-
hensive Organic Synthesis; eds. B. M. Trost and I. Fleming, Pergamon
Press, Oxford, 1991, vol. 5, pp. 699–750; V. A. Bakulev, Russ. Chem.
Rev. (Engl. Transl.), 1995, 64, 99–124; J. M. Takacs and L. Pelter, in
Methoden der Organischen Chemie (Houben-Weyl), vol. E21d, Georg
Thieme Verlag, Stuttgart, 1995, pp. 3833–3849.
Scheme 4 Reagents and conditions: [a] BuLi; [b] methacrolein; [c] SOCl2,
pyridine; [d] Cs2CO3, THF, D; [e] toluene, 110 °C, 3 h, argon.
7 R. B. Woodward and R. Hoffmann, The Conservation of Orbital
Symmetry, Verlag Chemie/Academic Press, Weinheim, 1970.
8 (a) R. B. Woodward, in Aromaticity, Chemical Society Special
Publication No. 21, London, 1967, pp. 217–249; (b) G. Fráter, Helv.
Chim. Acta, 1974, 57, 2446–2454; (c) K. C. Nicolaou, N. A. Petasis, R.
E. Zipkin and J. Uenishi, J. Am. Chem. Soc., 1982, 104, 5555–5557(and
the three following papers). (d) W. H. Okamura, R. Peter and W.
Reischl, J. Am. Chem. Soc., 1985, 107, 1034–1041; (e) T. L. Gilchrist
and J. E. Stanford, J. Chem. Soc., Perkin Trans. 1, 1987, 225–230; (f) J.
K. Whitesell and M. A. Minton, J. Am. Chem. Soc., 1987, 109,
6403–6408; (g) T. L. Gilchrist and R. J. Summersell, J. Chem. Soc.,
Perkin Trans. 1, 1988, 2595–2601; (h) T. L. Gilchrist and R. J.
Summersell, J. Chem. Soc., Perkin Trans. 1, 1988, 2603–2606; (i) H.
Venkataraman and J. K. Cha, J. Org. Chem., 1989, 54, 2505–2506; (j)
M. Leclaire and J. Y. Lallemand, Tetrahedron Lett., 1989, 30,
6331–6334; (k) S. Katsumura, A. Kimura and S. Isoe, Tetrahedron,
1989, 45, 1337–1346; (l) C. Fehr, J. Galindo and O. Guntern,
Tetrahedron Lett., 1990, 31, 4021–4024; (m) C. M. Hettrick and W. J.
Scott, J. Am. Chem. Soc., 1991, 113, 4903–4910; (n) B. M. Trost, W.
Pfrengle, H. Urabe and J. Dumas, J. Am. Chem. Soc., 1992, 114,
1923–1924; (o) B. M. Trost and Y. Shi, J. Am. Chem. Soc., 1992, 114,
791–792; (p) D. S. Torok and W. J. Scott, Tetrahedron Lett., 1993, 34,
3067–3070; (q) H. Henniges, F. E. Meyer, U. Schick, F. Funke, P. J.
Parsons and A. de Meijere, Tetrahedron, 1996, 52, 11545–11578; (r) J.
Suffert, B. Salem and P. Klotz, J. Am. Chem. Soc., 2001, 123,
12107–12108; (s) R. W. Rickards and D. Skropeta, Tetrahedron, 2002,
58, 3793–3800; (t) T. Lomberget, D. Bouyssi and G. Balme, Synlett,
2002, 1439–1442.
9 For a discussion, see: E. N. Marvell, C. Hilton and M. Tilton, J. Org.
Chem., 1983, 48, 5379–5381.
10 B. M. Jacobson, G. M. Arvanitis, C. A. Eliasen and R. Mitelman, J. Org.
Chem., 1985, 50, 194–201; S. P. Khanapure, W. S. Powell and J.
Rokach, J. Org. Chem., 1998, 63, 8976–8982.
11 Wittig reactions based on tris(o-methoxymethoxyphenyl)phosphane
give high Z-selectivities, see: Q. Wang, M. El Khoury and M. Schlosser,
Chem. Eur. J., 2000, 6, 420–426.
12 See e.g. P. von Zezschwitz, F. Petry and A. de Meijere, Chem. Eur. J.,
2001, 7, 4035–4046.
13 M. Julia, M. Launay, J.-P. Stacino and J.-N. Verpeaux, Tetrahedron
Lett., 1982, 23, 2465–2468; J. Otera, H. Misawa and K. Sugimoto, J.
Org. Chem., 1986, 51, 3830–3833; T. Cuvigny, C. Herve du Penhoat
and M. Julia, Tetrahedron, 1987, 43, 859–872; G. E. Keck, K. A. Savin
and M. A. Weglarz, J. Org. Chem., 1995, 60, 3194–3204.
14 (a) J.-E. Bäckvall and S. K. Juntunen, J. Am. Chem. Soc., 1987, 109,
6396–6403; (b) M. F. Hentemann and P. L. Fuchs, Tetrahedron Lett.,
1997, 38, 5615–5618; (c) J.-E. Bäckvall, R. Chinchilla, C. Nájera and
M. Yus, Chem. Rev., 1998, 98, 2291–2312; (d) D. J. Meyers and P. L.
Fuchs, J. Org. Chem., 2002, 67, 200–204; (e) J. Evarts, E. Torres and P.
L. Fuchs, J. Am. Chem. Soc., 2002, 124, 11093–11101.
Scheme 5 Reagents and conditions: [a] BuLi, then 2-butenal; [b] SOCl2,
pyridine, 84% from 8; [c] Cs2CO3, THF, D, 1 h, > 80%; [d] toluene, 110 °C,
5 h, argon, > 90%.
which every position in the ring is either substituted or derivatised
to enable subsequent substitution. Alcohol 9, as a ca. 3 : 1 mixture
of diastereomers, was converted (SOCl2–pyridine) to a mixture of
at least four isomeric chlorides; ratio 10 : 11, ca. 10 : 1.
Elimination of HCl gave a mixture of triene isomers which was
unstable in air. Besides the major isomer 12 isomers with Z
configuration either at the central double bond ( < 2%) or at the
methyl-substituted double bond (11%; 1H NMR) were also
produced. The ring-closure of 12 was monitored by 1H NMR
spectroscopy and a half-life t1/2 = 0.9 h was found when the
reaction was run in toluene at 100 °C. The two minor triene isomers
gave no or little ring-closure. The product expected7 from 12 was
the cis-isomer 13. The product obtained showed a 1H NMR signal
at d 0.66 (d, 3H) which seems consistent with a cis configuration
and a shielding effect exerted by the adjacent phenyl group.18
Although 1H NMR analysis indicated high yields in the two steps
from (10 + 11) to 13, only 47% of 13 was isolated after purification
on silica gel. The loss is probably due to the instability of both 12
and 13. No instability in air was noticed for the carbocycles 2a–c
and 7 which lack a phenyl substituent.
In summary, the synthetic utility of the 1,6-electrocyclic reaction
of 1,3,5-trienes, leading to 1,3-cyclohexadienes, has been sig-
nificantly increased by using an auxiliary phenylsulfonyl group.
This group is used a) in the assembly of the carbon skeleton, b) to
obtain the required configuration of the triene, and c) in one or more
regioselective manipulations14 of the 2-phenylsulfonyl-1,3-cyclo-
hexadiene. Finally, the phenylsulfonyl group can be detached either
by substitution, elimination, reduction or oxidation, i.e. also in a
constructive step.19
15 See ESI†.
16 E. J. Corey and D. Seebach, J. Org. Chem., 1966, 31, 4097–4099; P. J.
Kocienski, B. Lythgoe and S. Ruston, J. Chem. Soc., Perkin Trans. 1,
1978, 829–834.
Notes and references
1 M. E. Jung, Tetrahedron, 1976, 32, 3–31; R. E. Gawley, Synthesis,
1976, 777–794; W. S. Wadsworth, Jr., Org. React., 1977, 25, 73–253; B.
E. Maryanoff and A. B. Reitz, Chem. Rev., 1989, 89, 863–927; R. J.
Ferrier and S. Middleton, Chem. Rev., 1993, 93, 2779–2831.
2 W. S. Johnson, Tetrahedron, 1991, 47, xi–l (issue 41); C. M. Marson,
Tetrahedron, 2000, 56, 8779–8794.
17 W. G. Young, F. F. Caserio, Jr. and D. D. Brandon, Jr., J. Am. Chem.
Soc., 1960, 82, 6163–6168 and later examples.
18 C. S. Wannere and P. von Ragué Schleyer, Org. Lett., 2003, 5, 605–608
and references therein.
19 N. S. Simpkins, Sulphones in Organic Synthesis, Pergamon, Oxford,
1993; C. Nájera and M. Yus, Tetrahedron, 1999, 55, 10547–10658.
C h e m . C o m m u n . , 2 0 0 4 , 2 9 2 – 2 9 3
293