10.1002/anie.201912728
Angewandte Chemie International Edition
COMMUNICATION
[1]
For a selection of 1,2,3-triazole syntheses and reviews see and
references there in: a) H. Pechmann, Ber. Dtsch. Chem. Ges. 1888,
21, 2751-2756; b) A. Michael, J. Prakt. Chem 1893, 2, 94–95; c) O.
Dimroth, G. Fester, Ber. Dtsch. Chem. Ges. 1910, 43, 2219–2230; d)
T. Curtius, K. Raschig, J. Prakt. Chem 1930, 125, 466–497; e) F. R.
Benson, W. L. Savell, Chem. Rev. 1950, 46, 1–68; f) R. H. Wiley, K.
F. Hussung, J. Moffat, J. Org. Chem. 1956, 21, 190–192; g) R.
Huisgen, Angew. Chem. Int. Ed. 1963, 2, 565–632; h) J. C. Kauer, R.
A. Carboni, J. Am. Chem. Soc. 1967, 89, 2633–2637; i) V. Melai, A.
Brillante, P. Zanirato, J. Chem. Soc., Perkin Trans 2 1998, 2447–
2449; j) M. Gardiner, R. Grigg, M. Kordes, V. Sridharan, N. Vicker,
Tetrahedron 2001, 57, 7729–7735; k) C. W. Tornøe, C. Christensen,
M. Meldel, J. Org. Chem. 2002, 67, 3057-3064; l) V. V. Rostovtsev,
L. G. Green, V. V. Fokin, K. B. Sharpless, Angew. Chem. Int. Ed.
2002, 41, 2596–2599; m) N. J. Agard, J. A. Prescher, C. R. Bertozzi,
J. Am. Chem. Soc. 2004, 126, 15046-15047; n) V. P. Krivopalov, O.
P. Shkurko, Russ. Chem. Rev. 2005, 74, 339–379; o) L. Zhang, X.
Chen, P. Xue, H. H. Y. Sun, I. D. Williams, K. B. Sharpless, V. V.
Fokin, G. Jia, J. Am. Chem. Soc. 2005, 127, 15998–15999; p) M.
Taillefer, N. Xia, A. Ouali, Angew. Chem. Int. Ed. 2007, 46, 934–936;
q) J. T. Fletcher, S. E. Walz, M. E. Keeney, Tetrahedron Lett. 2008,
49, 7030–7032; r) S. W. Kwok, J. E. Hein, V. V. Fokin, K. B.
Sharpless, Heterocycles 2008, 76, 1141–1154; s) L. Y. Wu, Y. X. Xie,
Z. S. Chen, Y. N. Niu, Y. M. Liang, Synlett 2009, 1453–1456; t) Y.
Jiang, C. Kuang, Q. Yang, Tetrahedron 2011, 67, 289–292; u) L. Wu,
B. Yan, G. Yang, Y. Chen, Heterocycl. Commun. 2013, 19, 397–400;
v) R. Matake, Y. Niwa, H. Matsubara, Org. Lett. 2015, 17, 2354–2357
H. Wamhoff, Comprenesive Heterocyclic Chemistry, Edited by A. R.
Katrizky, C. W. Rees, Oxford: Pergamon Press, 1984.
[16]
[17]
[18]
[19]
[20]
[21]
[22]
P. E. Nielsen, V. Leick, O. Buchardt, Acta Chem. Scand., Ser B 1975,
29B, 662-666.
K. Barral, A. D. Moorhouse, J. E. Moses, Org. Lett. 2007, 9, 1809-
1811.
R. J. Lewis, N. I. Sax, Sax’s Dangerous Properties of Industrial
Materials, Van Nostrand Reinhold: New York, 1992.
For the synthesis of ESF, see: Q. Zheng, J. Dong, K. B. Sharpless,
J. Org. Chem. 2016, 81, 11360-11362.
C. S. Rondestvedt, P. K. Chang, J. Am. Chem. Soc. 1955, 77, 6532–
6540.
The analogous reaction between phenyl azide and 1-bromoethene-
1-sulfonyl chloride revealed no alkylation product.
C. J. Smedley, M.-C. Giel, A. Molino, A. S. Barrow, D. J. D. Wilson,
J. E. Moses, Chem. Commun. 2018, 54, 6020–6023.
J. Thomas, V. V. Fokin, Org Lett. 2018, 20, 3749-3752.
J. Dong, L. Krasnova, M. G. Finn, K. B. Sharpless, Angew. Chem. Int.
Ed. 2014, 53, 9430–9448.
[23]
[24]
[25]
[26]
A. S. Barrow, C. J. Smedley, Q. Zheng, S. Li, J. Dong, J. E. Moses,
Chem. Soc. Rev. 2019, 48, 4731–4758.
The homolytic bond dissociation energy of the S-F bond in SO2F2
(90.5 ± 4.3 kcal mol-1) is far larger than the S–Cl bond in SO2Cl2 (46
± 4 kcal mol-1),[24] hence sulfonyl chlorides are more prone to
thermolysis.
[27]
[28]
ESF is known to function as an effective dienophile and dipolarophile:
a) H. U. Daeniker, J. Druey, Helv. Chim. Acta 1962, 604145, 1972–
1981; b) J. J. Krutak, R. D. Burpitt, W. H. Moore, J. A. Hyatt, J. Org.
Chem. 1979, 44, 3847–3858; c) Q. Chen, P. Mayer, H. Mayr, Angew.
Chem. Int. Ed. 2016, 55, 12664–12667.
[2]
[3]
[4]
Note: Unless otherwise stated, all reactions were performed in a
sealed Biotage Microwave Reaction vial designed to withstand
pressures of up to 30 bar using 0.50 mL (0.25 mmol scale) or 1.00
mL of solvent (0.50 mmol scale) in a vial with a solvent capacity
between 0.50-2.00 mL. The 1 g scale reactions were performed in a
vial with a capacity between 10.0-20.0 mL. No damage of the
glassware from HF was observed. The reactions may also be
performed in an open system at reflux, and the SO2 and HF by-
products (b.p. -10 °C and 19.5 °C respectively) removed by passing
through a solution of aqueous NaOH. The reactions must be vented
in a well ventilated hood and all glassware soaked in a solution of
aqueous NaOH for 16 h to quench remaining ESF and HF.
C. J. Smedley, Q. Zheng, B. Gao, S. Li, A. Molino, H. M.
Duivenvoorden, B. S. Parker, D. J. D. Wilson, K. B. Sharpless, J. E.
Moses, Angew. Chem. Int. Ed. 2019, 58, 4552-4556.
G. Meng, T. Guo, T. Ma, J. Zhang, Y. Shen, K. B. Sharpless, J. Dong,
Nature 2019, 574, 86-89.
H. C. Kolb, M. G. Finn, K. B. Sharpless, Angew. Chem. Int. Ed. 2001,
40, 2004–2021.
J. Catalan, J. L.M. Abboud, J. Elguero, Adv. Heterocycl. Chem. 1987,
41, 187–274.
[5]
[6]
H. C. Kolb, K. B. Sharpless, Drug Discov. Today 2003, 8, 1128–1137.
A. D. Moorhouse, A. M. Santos, M. Gunaratnam, M. Moore, S. Neidle,
J. E. Moses, J. Am. Chem. Soc. 2006, 128, 15972–15973.
D. S. Pedersen, A. Abell, Eur. J. Org. Chem. 2011, 2399–2411.
S. Haider, M. S. Alam, H. Hamid, Inflamm. Cell Signal. 2014, 1–10.
a) S. G. Agalave, S. R. Maujan, V. S. Pore, Chem. Asian J. 2011, 6,
2696–2718; b) A. Jain, P. Piplani, Mini-Reviews in Medicinal
Chemistry, 2019, 19, 1298–1368.
[7]
[8]
[9]
[29]
[30]
[10]
[11]
[12]
[13]
O. A. Phillips, V. O. Rotimi, W. Y. Jamal, M. Shahin, T. L. Verghese,
J. Chemother. 2003, 15, 113–117.
O. A. Phillips, E. E. Udo, A. A. M. Ali, N. Al-Hassawi, Bioorganic Med.
Chem. 2003, 11, 35–41.
A. Gin, L. Dilay, J. A. Karlowsky, A. Walkty, E. Rubinstein, G. G.
Zhanel, Expert Rev. Anti. Infect. Ther. 2007, 5, 365–383.
[31]
[32]
T. D. Brock, Bacteriol. Rev 1961, 25, 32–48.
A. A. Yunis, G. K. Arimura, M. Isildar, Am. J. Hematol. 1987, 24, 77–
84.
L. F. Hennequin, A. P. Thomas, C. Johnstone, E. S. E. Stokes, P. A.
Plé, J.-J. M. Lohnmann, D. J. Ogilvie, M. Dukes, S. R. Wedge, J. O.
Curwen, et al., J. Med. Chem. 1999, 42, 5369–5389.
[33]
H. M. Feder, C. Osier, E. G. Maderazo, Rev. Infect. Dis. 1981, 3,
479–491.
[14]
[15]
D. G. H. Livermore, R. C. Bethell, N. Cammack, A. P. Hancock, M.
M. Hann, D. V. S. Greene, R. B. Lamont, S. A. Noble, D. C. Orr, J. J.
Payne, et al., J. Med. Chem. 1993, 36, 3784–3794.
[34]
[35]
A. S. Barrow, J. E. Moses, Synlett, 2016, 27, 1840-1843.
J. Dong., K. B. Sharpless, J. W. Kelly, W. Chen. US Pat., 10117840,
2018.
D. Lednicer, L. A. Mitscher, The Organic Chemistry of Drug
Synthesis, Wiley, New York, 1977.
[36]
Details about the formation of the sulfonate were not provided.[20] The
S–Cl bonds of sulfonyl chloride are prone to homolysis at higher
This article is protected by copyright. All rights reserved.