ascites.9 Therefore, levels of sn-2 LPA seem to be associated
with the initiation and progression of ovarian cancer.10
However, sn-2 LPA is not stable under physiological
conditions; it is readily converted under both acidic and basic
conditions to an equilibrium mixture of sn-1 and sn-2 LPA
isomers via intramolecular acyl chain migration (Scheme 1,
We replaced the hydroxyl group with a hydroxyethoxy (HE)
group to render acyl migration unfavorable. The advantage
of this design is 2-fold. First, the HE group replacement will
maintain a functional “lyso-like” structure, since initial
structure-activity relationship (SAR) studies19 have revealed
that a hydroxyl group, an alkyl of more than 12 carbon atoms,
and a phosphate monoester are required for the biological
activities of LPA. Second, the HE group creates an unfavor-
able intermediate for the intramolecular acyl20 migration that
compromises the stereochemistry by regioisomerization
(Scheme 1, bottom).
Scheme 1. Favorable Intermediate for Acyl Migration for LPA
(top) and Unfavorable Intermediate for Migration in HE-LPA
Analogues (bottom)
Traditionally, GPCRs have shown a preference for the
naturally occurring enantiomer of their cognate ligands.
However, our preliminary biological results have demon-
strated that the unnatural D (2S) stereoisomers of some
O-methylated LPA analogues (OMPT)21 are more active than
naturally occurring L (2R) enantiomorphs (Qian, Xu, Mills,
Aoki, and Prestwich, submitted for publication). On the basis
of these results, we synthesized the (2S) enantiomers of sn-1
and sn-2 acyl HE-LPA as our desired nonmigrating LPA
analogues using an efficient and stereoselective chemical
synthetic route.
As shown in Scheme 2, regiospecific and stereospecific
top).11 The lability of the acyl group in a 2-acyl-sn-glycerol-
3-phosphate impedes structure-activity studies of individual
LPA species.
Scheme 2. Synthesis of 1-Acyl, 2-HE LPA Analoguesa
LPA signaling occurs through specific cell surface recep-
tors of the endothelial cell differentiation gene (Edg) family
of seven-transmembrane domain G-protein-coupled receptors
(GPCR), which includes Edg-2/LPA1, Edg-4/LPA2, and Edg-
7/LPA3.12 Recently, an additional LPA receptor, p2y9/
GPR23/LPA4, only distantly related to the Edg receptors and
more closely related to the purinergic receptors, has been
identified.13 However, the function of particular receptors
in the mammalian system and the molecular mechanism of
LPA actions are still subjects of intensive investigation.14
Previously, we described the enantioselective synthesis and
biological activities of a variety of fluorinated LPA analogues
as metabolically stabilized ligands for LPA receptors.15-18
Herein, we report an alternative approach to create LPA
analogues with improved stability as useful molecular tools.
a Reagents and conditions: (a) PMBOH, DIBAL, CH2Cl2, 51%;
(b) TBDMSCl, DMAP, TEA, CH2Cl2, 78%; (c) NaH, TBAI,
BrCH2CH2OTHP, DMF, 56%; (d) TBAF, THF, 95%; (e) Oleic acid
(palmitic acid), DCC, DMAP, CH2Cl2, 82%; (f) DDQ, CH2Cl2,
66%; (g) (OMe)2P(O)Cl, t-BuOK, 75%; (h) TMSBr, MeOH/H2O,
95%.
(9) Mills, G. B.; Eder, A.; Fang, X.; Hasegawa, Y.; Mao, M.; Lu, Y.;
Tanyi, J.; Tabassam, F. H.; Wiener, J.; Lapushin, R.; Yu, S.; Parrott, J. A.;
Compton, T.; Tribley, W.; Fishman, D.; Stack, M. S.; Gaudette, D.; Jaffe,
R.; Furui, T.; Aoki, J.; Erickson, J. R. Cancer Treat. Res. 2002, 107, 259-
283.
ring opening of (S)-glycidol22 by 4-methoxybenzyl alcohol
(PMB-OH), using diisobutylaluminum hydride (DIBAL),
generated the PMB protected glycerol (1). After selective
(10) Fang, X.; Schummer, M.; Mao, M.; Yu, S.; Tabassam, F. H.; Swaby,
R.; Hasegawa, Y.; Tanyi, J. L.; LaPushin, R.; Eder, A.; Jaffe, R.; Erickson,
J.; Mills, G. B. Biochim. Biophys. Acta 2002, 1582, 257-264.
(11) Chevallier, J.; Sakai, N.; Robert, F.; Kobayashi, T.; Gruenberg, J.;
Matile, S. Org. Lett. 2000, 2, 1859-1861.
(12) Contos, J. J.; Ishii, I.; Chun, J. Mol. Pharmacol. 2000, 58, 1188-
1196.
(19) Lynch, K. R.; Macdonald, T. L. Biochim. Biophys. Acta 2002, 1582,
289-294.
(13) Noguchi, K.; Ishii, S.; Shimizu, T. J. Biol. Chem. 2003, 278, 25600-
25606.
(20) Yokoyama, K.; Baker, D. L.; Virag, T.; Liliom, K.; Byun, H. S.;
Tigyi, G.; Bittman, R. Biochim. Biophys. Acta 2002, 1582, 295-308.
(21) Hasegawa, Y.; Erickson, J. R.; Goddard, G. J.; Yu, S.; Liu, S.;
Cheng, K. W.; Eder, A.; Bandoh, K.; Aoki, J.; Jarosz, R.; Schrier, A. D.;
Lynch, K. R.; Mills, G. B.; Fang, X. J. Biol. Chem. 2003, 278, 11962-
11969.
(14) Bandoh, K.; Aoki, J.; Taira, A.; Tsujimoto, M.; Arai, H.; Inoue, K.
FEBS Lett. 2000, 478, 159-165.
(15) Xu, Y.; Prestwich, G. D. J. Org. Chem. 2002, 67, 7158-7161.
(16) Xu, Y.; Prestwich, G. D. Org. Lett. 2002, 4, 4021-4024.
(17) Xu, Y.; Qian, L.; Prestwich, G. D. J. Org. Chem. 2003, 68, 5320-
5330.
(22) Erukulla, R. K.; Byun, H. S.; Locke, D. C.; Bittman, R. J. Chem.
Soc., Perkin. Trans. 1 1995, 11367-11597.
(18) Xu, Y.; Qian, L.; Prestwich, G. D. Org. Lett. 2003, 5, 2267-2270.
4686
Org. Lett., Vol. 5, No. 24, 2003