C O M M U N I C A T I O N S
converted to the selenocarbonate 13 using phosgene and phenyl-
selenol.15 The selenocarbonate 13 was subjected to standard free
radical conditions, to afford the γ-butyrolactone in 80% yield.
Metal-catalyzed isomerization of the exo-cyclic olefin and subse-
quent hydrolysis of the diethyl acetal furnished the requisite
aldehyde 4 in good overall yield.
triply convergent 12-step sequence (longest linear sequence) in
13.6% overall yield. This approach represents the first application
of the temporary silicon-tethered (TST) ring-closing metathesis
(RCM) cross-coupling reaction and the enantioselective alkyne/
aldehyde addition in the synthesis of a complex annonaceous
acetogenin. Finally, the synthesis highlights the utility of the bismuth
tribromide-mediated reductive etherification for the construction
of 3-hydroxy-2,6-disubstituted tetrahydropyrans.
Scheme 4 a
Acknowledgment. This work is dedicated to Professor Philip
D. Magnus on the occasion of his 60th birthday. We sincerely thank
the National Institutes of Health (GM58877) for generous financial
support. We also thank Johnson and Johnson for a Focused GiVing
Award and Pfizer Pharmaceuticals for the CreatiVity in Organic
Chemistry Award. The Camille and Henry Dreyfus Foundation is
thanked for a Camille Dreyfus Teacher-Scholar Award (P.A.E.).
a (a) S-Propylene oxide 6, nBuLi, HMPA, THF, -30 °C; (b) COCl2,
Et3N, C6H6, 0 °C to room temperature, then PhSeH, pyridine, THF/C6H6,
0 °C to room temperature, 60% overall yield from 12; (c) nBu3SnH, AIBN,
C6H6, ∆, 80%; (d) RhH(CO)(PPh3)3, C6H6, 85 °C, 84%; (e) HCOOH,
pentane, 0 °C, 90%.
Note Added after ASAP. In the version posted 11/5/03, in
Scheme 2 the absolute configuration for the secondary tert-
butyldimethylsilyl ether in 7, 8, and 9 was incorrect. The version
posted 11/11/03 and the print version are correct.
Scheme 5 a
Supporting Information Available: Spectral data and detailed
experimental procedures for all of the synthetic intermediates (PDF).
This material is available free of charge via the Internet at http://
pubs.acs.org.
References
(1) Shi, G.; Alfonso, D.; Fatope, M. O.; Zeng, L.; Gu, Z.-M.; Zhao, G.-x.;
He, K.; MacDougal, J. M.; McLaughlin, J. L. J. Am. Chem. Soc. 1995,
117, 10409.
(2) For total syntheses of mucocin (1), see: (a) Neogi, P.; Doundoulakis, T.;
Yazbak, A.; Sinha, S. C.; Sinha, S. C.; Keinan, E. J. Am. Chem. Soc.
1998, 120, 11279. (b) Ba¨urle, S.; Hoppen, S.; Koert, U. Angew. Chem.,
Int. Ed. 1999, 38, 1263. (c) Takahashi, S.; Nakata, T. J. Org. Chem. 2002,
67, 5739. (d) Takahashi, S.; Kubota, A.; Nakata, T. Angew. Chem., Int.
Ed. 2002, 41, 4751.
(3) For alternative synthetic approaches to the 3-hydroxy 2,6-disubstituted
tetrahydropyran ring of mucocin (1), see: (a) Evans, P. A.; Roseman, J.
D. Tetrahedron Lett. 1997, 38, 5249. (b) Evans, P. A.; Murthy, V. S.
Tetrahedron Lett. 1999, 40, 1253. (c) Takahashi, S.; Fujisawa, K.; Sakairi,
N.; Nakata, T. Heterocycles 2000, 53, 1361.
(4) (a) Ahammadsahib, K. I.; Hollingworth, R. M.; McGovren, J. P.; Hui, Y.
H.; McLaughlin, J. L. Life Sci. 1993, 53, 1113. (b) Morre, D. J.; de Cabo,
R.; Farley, C.; Oberlies, N. H.; McLaughlin, J. L. Life Sci. 1995, 56, 343.
(5) For examples of silicon-tethered ring-closing metathesis homo-coupling
reactions, see: (a) Fu, G. C.; Grubbs, R. H. J. Am. Chem. Soc. 1992,
114, 7324. (b) Evans, P. A.; Murthy, V. S. J. Org. Chem. 1998, 63, 6768.
(6) For examples of silicon-tethered ring-closing metathesis cross-coupling
reactions, see: (a) Hoye, T. R.; Promo, M. A. Tetrahedron Lett. 1999,
40, 1429. (b) Van de Weghe, P.; Aoun, D.; Boiteau, J.-G.; Eustache, J.
Org. Lett. 2002, 4, 4105 and pertinent references therein.
(7) For recent reviews on temporary silicon-tethered strategies, see: (a) White,
J. D.; Carter, R. G. In Science of Synthesis: Houben-Weyl Methods of
Molecular Transformations; Fleming, I., Ed.; Georg Thieme Verlag: New
York, 2001; Vol. 4, pp 371-412. (b) Skrydstrup, M. In Science of
Synthesis: Houben-Weyl Methods of Molecular Transformations; Fleming,
I., Ed.; Georg Thieme Verlag: New York, 2001; Vol. 4, pp 439-530
and pertinent references therein.
a (a) 3, Et2Zn, PhMe, ∆, then (R)-BINOL, Ti(OiPr)4, THF, 4, 0 °C, 81%;
(b) TIPSOTf, pyridine, DMAP, THF, 0 °C, 96%; (c) (NH4)2Ce(NO3)6,
MeCN/H2O, -10 °C, 91%; (d) 2, Pr2SiCl2 (xs), CH2Cl2, imidazole, 0 °C
to room temperature, then 14, imidazole, 0 °C to room temperature, 74%;
(e) Grubbs’ catalyst (1.8 equiv), 1,2-DCE, ∆, 83%; (f) HF/MeCN, CH2Cl2,
room temperature, 91%; (g) TsNHNH2, NaOAc, 1,2-DME/H2O, ∆, 95%.
i
Scheme 5 outlines the manner in which the three fragments were
assembled to complete the synthesis of mucocin (1). The enanti-
oselective addition of the alkynyl zinc reagent derived from 3 to
the aldehyde 4 furnished the propargylic alcohol in 81% yield with
excellent selectivity (ds ) 20:1 by HPLC).9,16 Protection of the
alcohol as the triisopropylsilyl ether followed by deprotection of
the p-methoxyphenyl ether afforded the allylic alcohol 1410 and
thereby set the stage for the TST-RCM cross-coupling reaction. The
construction of the mixed bis-alkoxy silane was achieved from the
allylic alcohol 2 through the treatment with excess diisopropyldi-
chlorosilane to afford the mono-alkoxychlorosilane, followed by
the removal of the excess silylating agent and addition of the second
allylic alcohol 14. Ring-closing metathesis of the silicon-tethered
diene using stoichiometric Grubbs’ catalyst furnished 15 in 83%
yield and completed the construction of the carbon skeleton of
mucocin (1) (Scheme 5).17 The synthesis was concluded with the
fluoride-mediated deprotection of 15, followed by chemoselective
reduction with diimide.18 The spectroscopic data and optical rotation
of synthetic mucocin (1) were identical in all respects to the values
reported for the natural substance [1H/13C NMR, IR, [R]26D -16.0
(c ) 0.25, CH2Cl2)].
(8) Schreiber, S. L.; Schreiber, T. S.; Smith, D. B. J. Am. Chem. Soc. 1987,
109, 1525.
(9) (a) Lu, G.; Li, X.; Chan, W. L.; Chan, A. S. C. Chem. Commun. 2002,
172. (b) Gao, G.; Moore, D.; Xie, R.-G.; Pu, L. Org. Lett. 2002, 4, 4143.
(10) Fukuyama, T.; Laird, A. A.; Hotchkiss, L. M. Tetrahedron Lett. 1985,
26, 6291.
(11) For the ring opening of dioxirane, which leads to a regioisomeric mixture,
see: Oppolzer, W.; Snowden, R. L. Tetrahedron Lett. 1976, 17, 4187.
(12) Kolb, H. C.; VanNieuwenhze, M. S.; Sharpless, K. B. Chem. ReV. 1994,
94, 2483.
(13) (a) Evans, P. A.; Cui, J.; Gharpure, S. J.; Hinkle, R. J. J. Am. Chem. Soc.
2003, 125, 11456. (b) Evans, P. A.; Cui, J.; Gharpure, S. J. Org. Lett.
2003, 5, 3883.
(14) Inoki, S.; Mukaiyama, T. Chem. Lett. 1990, 67.
(15) Evans, P. A.; Murthy, V. S. Tetrahedron Lett. 1998, 39, 9627 and pertinent
references therein.
(16) Extensive modification of the reported procedure was necessary to achieve
optimum selectivity.
(17) The construction of trans-1,4-silaketals using ring-closing metathesis is
known to be challenging, see: Evans, P. A.; Cui, J.; Buffone, G. P. Angew.
Chem., Int. Ed. 2003, 42, 1734.
In conclusion, we have accomplished an enantioselective total
(18) Marshall, J. A.; Chen, M. J. Org. Chem. 1997, 62, 5996.
synthesis of the annonaceous acetogenin (-)-mucocin (1) using a
JA0384734
9
J. AM. CHEM. SOC. VOL. 125, NO. 48, 2003 14703