Novel para- and meta-Phenylenevinylene Derivatives
J. Phys. Chem. B, Vol. 106, No. 25, 2002 6449
butylammonium hydrogen sulfate (10 mol % vs the heterocycle)
was heated under reflux for 1 h. After cooling, the crude product
was filtered off and recrystallized.
yield of 0.75 in ethanol,49 was taken as the reference compound.
We stress that the PPV-like oligomer and the reference
compound all emit in a wavelength range at which the spectral
sensitivity of the fluorimeter is almost constant.
4-[2-(4-Pyrimidinyl)ethenyl]-4′-[2-(6-pyrimidinyl)ethenyl]-
benzaldehyde (6). Yield: 85%. M.p. (CH3CN) 230 °C (decom-
Theoretical Characterization. The geometries of all of the
molecular compounds were optimized with the help of the semi-
empirical Hartree-Fock AM1 (Austin Model 1) Hamiltonian,
which has been parametrized to accurately reproduce ground-
state geometric structures.50 All of the internal degrees of
freedom are optimized to provide the structural data used as
input in the simulation of the gas-phase UPS spectra. On the
basis of the optimized geometries, we have calculated the one-
electron structure of the compounds by means of the spectro-
scopic version of the semiempirical intermediate neglect of
differential overlap (INDO) Hamiltonian developed by Zerner
and co-workers.51 The UPS spectra are simulated at the INDO
level within Koopmans’ approximation, as described in refs 52
and 53, in which the choice of our approach to describe the
nature of the highest occupied levels of organic conjugated
materials was validated. The optical absorption spectra are
computed by coupling the INDO Hamiltonian to a single
configuration interaction (SCI) scheme; all of the π levels of
the molecules are involved in the generation of the singly excited
configurations to ensure size consistency. Our previous studies
have demonstrated that this technique is successful in describing
the nature and the energies of the lowest excited states of organic
conjugated molecules.54,55
1
position). H NMR δ 10.0 (2H, s), 9.1 (1H, s), 8.0 (2H, d, 16
Hz), 7.9 (4H, d, 8 Hz), 7.7 (4H, d, 10 Hz), 7.3 (1H, s), 7.2 (2H,
d, 16 Hz) ppm. 13C NMR not available (solubility too low). IR
(KBr) 1696, 1602, 1576, 810, 515 cm-1. Anal. Calcd. for
C22H16N2O2: C, 77.63; H, 4.74; N, 8.23. Found: C, 76.88; H,
4.86; N, 8.21. HRMS Calcd. for C22H16N2O2: 340.121 178.
Found: 340.121 140.
4,4′-(1,3-Phenylenedi-2,1-ethenediyl)bis-pyrimidine (7).
Yield: 70%. M.p. (CH3CN) 182-4 °C. 1H NMR δ 9.2 (2H, s),
8.6 (2H, d, 6 Hz), 7.9 (2H, d, 16 Hz), 7.8 (1H, s), 7.6-7.1 (5H,
m), 7.0 (2H, d, 16 Hz). 13C NMR δ 161.9, 158.9, 157.5, 136.7,
136.2, 129.4, 128.3, 126.8, 126.2, 118.8 ppm. IR (KBr) 1636,
1572, 1461, 1386, 988 cm-1. Anal. Calcd. for C18H14N4: C,
75.50; H, 4.93; N, 19.57. Found: C, 75.40; H, 4.97; N, 19.58.
HRMS Calcd. for C18H14N4: 286.121 847. Found: 286.122 187.
4,4′-(1,4-Phenylenedi-2,1-ethenediyl)bis-pyrimidine (8).
Yield: 90%. M.p. (DMSO) 234-6 °C. 1H NMR δ 9.2 (2H, s),
8.7 (2H, d, 6 Hz), 7.9 (2H, d, 16 Hz), 7.6 (4H, s), 7.3 (2H, d,
6 Hz), 7.1 (2H, d, 16 Hz) ppm. 13C NMR δ 161.9, 158.9, 157.5,
136.7, 136.6, 128.3, 128.2, 126.3, 118.9 ppm. IR (KBr) 1634,
1568, 1385, 847, 564 cm-1. Anal. Calcd. for C18H14N4: C,
75.50; H, 4.93; N, 19.57. Found: C, 75.55; H, 4.87; N, 19.64.
HRMS Calcd. for C18H14N4: 286.121 847. Found: 286.121 283.
References and Notes
Experimental Characterization. The HeI gas-phase photo-
electron spectra of five different oligophenylenevinylenes were
recorded using an instrument that features a 36-cm radius, 8-cm
gap hemispherical analyzer (McPherson) and custom-designed
excitation source, sample cells, and detection and control
electronics that have been described in more detail previously.47
The oligophenylenevinylenes sublimed cleanly with no evidence
of decomposition products in the gas phase or as a solid residue.
The samples sublimed between 120 and 220 °C (10-4 Torr); 4
sublimed at 120-140 °C, 5 at 170-190 °C, 6 at 200-220 °C,
7 at 150-160 °C, and 8 at 160-180 °C. These temperatures
were monitored using a “K”-type thermocouple passed through
a vacuum feedthrough and attached directly to the sample cell.
The argon 2P3/2 ionization at 15.759 eV was used as an internal
calibration lock of the absolute ionization energy. The difference
(1) Sheats, J. R.; Antoniadis, H.; Hueschen, M.; Leonard, W.; Miller,
J.; Moon, R.; Roitman, D.; Stocking, A. Science 1996, 273, 884.
(2) Friend, R. H.; Gymer, R. W.; Holmes, A. B.; Burroughes, J. H.;
Marks, R. N.; Taliani, C.; Bradley, D. D. C.; dos Santos, D. A.; Bre´das, J.
L.; Lo¨gdlund, M.; Salaneck, W. R. Nature 1999, 397, 121.
(3) Tang, C. W.; van Slyke, S. A. Appl. Phys. Lett. 1987, 51, 913.
(4) Pardo, D. A.; Jabbour, G. E.; Peyghambarian, N. AdV. Mater. 2000,
12, 1249.
(5) Greenham, N. C.; Moratti, S. C.; Bradley, D. D. C.; Friend, R. H.;
Holmes, A. B. Nature 1993, 365, 268.
(6) Chung, S. J.; Kwon, K. Y.; Lee, S. W.; Jin, J. I.; Lee, C. H.; Lee,
C. E.; Park, Y. AdV. Mater. 1998, 10, 1112.
(7) Zheng, M.; Ding, L. M.; Gurel, E. E.; Lahti, P. M., Karasz, F. E.
Macromolecules 2001, 34, 4124.
(8) Lee, Y.; Chen, X.; Chen, S. A.; Wei, P. K.; Fann, W. S. J. Am.
Chem. Soc. 2001, 123, 2296.
(9) Cao, Y.; Parker, I. D.; Yu, G.; Zhang, C.; Heeger, A. J. Nature
1999, 397, 414.
(10) Ohmori, Y.; Hironaka, Y.; Yoshida, R.; Fujii, A.; Tada, N.; Yoshino,
2
2
between the argon P3/2 ionization and the methyl iodide E1/2
ionization at 9.538 eV was used to calibrate the ionization energy
scale. During data collection, the instrument resolution (meas-
ured using fwhm of the argon 2P3/2 peak) was 0.020-0.035 eV.
All data are intensity-corrected with an experimentally deter-
mined instrument analyzer sensitivity function. The HeI spec-
trum was also corrected for HeIâ resonance line emission from
the source, which is about 3% the intensity of the HeIR line
emission and at 1.869 eV higher photon energy. The first two
ionization peaks were fit using two asymmetric Gaussian
peaks.48 Ionization peak potentials are reproducible to (0.02
eV (∼3σ level).
K. Polym. AdV. Technol. 1997, 8, 403.
(11) Sariciftci, N. S.; Smilowitz, L.; Heeger, A. J.; Wudl, F. Science
1992, 258, 1474.
(12) Halls, J. J. M.; Walsh, C. A.; Greenham, N. C.; Marseglia, E. A.;
Friend, R. H.; Moratti, S. C.; Holmes, A. B. Nature 1995, 376, 498.
(13) Smolenyak, P.; Peterson, R.; Nebesny, K.; To¨rker, M.; O’Brien,
D. F.; Armstrong, N. R. J. Am. Chem. Soc. 1999, 121, 8628.
(14) Yu, G.; Wang, J.; McElvain, J.; Heeger, A. J. AdV. Mater. 1998,
17, 1431.
(15) Halls, J. J. M.; Cornil, J.; dos Santos, D. A.; Silbey, R.; Wang, D.
H.; Holmes, A. B.; Bre´das, J. L.; Friend, R. H. Phys. ReV. B 1999, 60,
5721.
(16) Baldo, M. A.; O’Brien, D. F.; You, Y.; Shoustikov, A.; Silbey, S.;
Thompson, M. E.; Forrest, S. R. Nature 1998, 395, 151.
(17) Cleave, V.; Yahioglu, G.; Le Barny, P.; Friend, R. H.; Tessler, N.
AdV. Mater. 1999, 11, 285.
(18) Vanden Eynde, J. J.; Pascal, L.; Dubois P.; Van Haverbeke Y. Synth.
Commun. 2001, 31, 3167.
The optical absorption spectra were recorded with a Varian
Cary 50 spectrophotometer in ethanol or in dichloromethane
(C ) 2 × 10-5 M). Excitation and emission spectra were
measured on a Shimadzu RF5301PC fluorimeter in dichloro-
methane (C ) 5 µg/mL). Fluorescence quantum yields, Φf, were
determined on a Perkin-Elmer MPF-2A fluorimeter from the
integrated fluorescence spectra of dilute solutions (absorbance
at the excitation wavelength, 350 nm, being lower than 0.1) in
ethanol; 7-amino-4-methylcoumarin, with a reported quantum
(19) Kraft, A.; Grimsdale, A. C.; Holmes, A. B. Angew. Chem., Int.
Ed. 1998, 37, 403.
(20) Primary Photoexcitations in Conjugated Polymers: Molecular
Exciton Versus Semiconductor Band Model; Sariciftci, N. S., Ed.; World
Scientific: Singapore, 1997.
(21) Lhost, O.; Bre´das, J. L. J. Chem. Phys. 1992, 96, 5279.
(22) Karabunarliev, S.; Baumgarten, M.; Tyutyulkov, N.; Mu¨llen, K. J.
Phys. Chem. 1994, 98, 11892.