Organophosphate-accelerated Cu-catalyzed Sonogashira cross coupling
Table 3. Cu(OTf)2-catalyzed Sonogashira cross-coupling reaction of aryl iodides with terminal alkynesa
Entry
R1
R2
Yield (%)b
Entry
R1
R2
Yield (%)b
1
p-OMe
m-CH3
o-CF3
C6H5
96
83
74
90
60
52
—
—
85
90
73
68
13
14
15
16
17
18
19
20
21
22
23
24
m-CH3
m-CH3
m-CH3
m-CH3
o-CF3
p-C2H5C6H5
n-C5H13C6H5
n-C4H9
80
76
—
50
82
74
—
—
83
78
60
54
2
C6H5
3
C6H5
4
H
C6H5
n-C5H11
5
p-OMe
m-CH3
o-CF3
n-C6H13
n-C6H13
n-C6H13
n-C6H13
C6H5
p-C2H5C6H5
p-CH3C6H5
n-C4H9
6
o-CF3
7
o-CF3
8
p-NO2
p-OMe
p-OMe
p-OMe
p-OMe
o-CF3
n-C5H11
9
o-CF3
n-C5H13C6H5
n-C5H13C6H5
n-C5H13
10
11
12
p-CH3C6H5
n-C4H9
n-C5H11
m-CH3
m-NO2
p-NO2
p-CH3C6H5
aReaction conditions: Cu(OTf)2 (99.995%, 4 mol%), Cs2CO3 (1 mmol, 0.3259 g), aryl iodide (1 mmol), alkyne (1 mmol), 130 °C, 16 h. L1 (10 mol%), DMSO (2.5 mL).
bIsolated yields.
reaction in this case (Table 3, Entries 19, 20). Therefore, it can be
concluded that in the presence of Cu(OTf)2/L1, iodobenzenes with
electron-donating groups and arylalkynes are beneficial to the cou-
pling reaction, but iodobenzenes containing an electron-
withdrawing group and aliphatic alkynes decrease the coupling
product yield.
(20120202120005), Natural Science Basic Research Plan in Shaanxi
Province of China (2012JM2006) and Shaanxi Innovative Team of
Key Science and Technology (2013KCT-17).
References
[1] M. Meldal, C. W. Tornøe, Chem. Rev. 2008, 108, 2952.
[2] G. Evano, N. Blanchard, M. Toumi, Chem. Rev. 2008, 108, 3054.
[3] F. Amblard, J. H. Cho, R. F. Schinazi, Chem. Rev. 2009, 109, 4207.
[4] R. Chinchilla, C. Nájera, Chem. Rev. 2014, 114, 1783.
[5] J. Magano, J. R. Dunetz, Chem. Rev. 2011, 111, 2177.
[6] K. Sonogashira, Metal-Catalyzed Cross-Coupling Reactions, Wiley-VCH,
Weinheim, 2004.
[7] R. R. Tykwinski, Angew. Chem. Int. Ed. 2003, 42, 1566.
[8] K. Sonogashira, Organopalladium Chemistry for Organic Synthesis,
Wiley-Interscience, New York, 2002.
Conclusions
We have established an efficient catalytic system for copper-
catalyzed Sonogashira cross coupling using Cu(OTf)2/L1 (L1 = (R)-
(À)-1,1′-binaphthyl-2,2′-diyl hydrogenphosphate). This system is
effective for cross coupling of both aliphatic and aromatic terminal
alkynes under low copper loading (4 mol%) conditions. The cou-
pling reaction is compatible with a broad scope of functional
groups and affords products in good to excellent yields.
[9] C. X. Lin, J. F. Zhu, Q. S. Li, L. H. Ao, Y. J. Jin, F. B. Xu, F. Z. Hu, Y. F. Yuan,
Appl. Organometal. Chem. 2014, 28, 298.
[10] J. P. Wan, S. Cao, Y. F. Jing, Appl. Organometal. Chem. 2014, 28, 631.
[11] L. H. Zou, A. J. Johansson, E. Zuidema, C. Bolm, Chem. Eur. J. 2013, 19,
8144.
Experimental
[12] T. Y. Li, X. M. Qu, G. L. Xie, J. C. Mao, Chem. Asian J. 2011, 6, 1325.
[13] A. Tlili, F. Monnier, M. Taillefer, Chem. Eur. J. 2010, 16, 12299.
[14] P. F. Larsson, C. Bolm, P. O. Norrby, Chem. Eur. J. 2010, 16, 13613.
[15] J. T. Guan, G. A. Yu, L. Chen, T. Q. Weng, J. J. Yuan, S. H. Liu, Appl.
Organometal. Chem. 2009, 23, 75.
All reactions were carried out using a standard Shlenck line. All
halides and alkynes were purchased from Aldrich and Alfa Aesar.
CuI (99.995%) was purchased from Aldrich. NMR spectra were
measured in CDCl3 with a Bruker AVANCE 400 NMR spectrometer
(400 MHz) with tetramethylsilane as an internal reference.
[16] K. Okuro, M. Furuune, M. Enna, M. Miura, M. Nomura, J. Org. Chem.
1993, 58, 4716.
[17] F. Monnier, M. Taillefer, Top. Organometal. Chem. 2013, 46, 173.
[18] R. Chinchilla, C. Nájera, Chem. Soc. Rev. 2011, 40, 5084.
[19] D. S. Surry, S. L. Buchwald, Chem. Sci. 2010, 1, 13.
[20] Z. J. Liu, J. P. Vors, E. R. F. Gesing, C. Bolm, Green Chem. 2011, 13, 42.
[21] K. G. Thakur, E. A. Jaseer, A. B. Naidu, G. Sekar, Tetrahedron Lett. 2009,
50, 2865.
[22] A. Correa, C. Bolm, Adv. Synth. Catal. 2007, 349, 2673.
[23] D. Maiti, S. L. Buchwald, J. Org. Chem. 2010, 75, 1791.
[24] F. Liu, D. W. Ma, J. Org. Chem. 2007, 72, 4844.
[25] Q. Cai, B. Zou, D. W. Ma, Angew. Chem. Int. Ed. 2006, 45, 1276.
[26] J. C. Mao, J. Guo, S. J. Ji, J. Mol. Catal. A 2008, 284, 85.
[27] J. H. Kou, A. Saha, C. Bennett-Stamper, R. S. Varma, Chem. Commun.
2012, 48, 5862.
Typical Procedure with Cu(OTf)2/L1 System for Cross-Coupling
Reactions of Aryl Halides with Terminal Alkynes
A mixture of aryl halide (1.0 mmol), alkyne (1.0 mmol), Cu (4 mol %),
L1 (10 mol %) and Cs2CO3 (1 mmol) was stirred at 130°C for 12 h. Af-
ter the reaction was finished, diethyl ether was poured into the mix-
ture, then washed with water, extracted with diethyl ether, dried
with anhydrous Na2SO4 and evaporated under vacuum. The resi-
due was purified using flash column chromatography (hexane or
hexane–ethyl acetate) to afford the desired coupled product.
[28] B. X. Tang, F. Wang, J. H. Li, Y. X. Xie, M. B. Zhang, J. Org. Chem. 2007, 72,
6294.
[29] M. B. Thathagar, J. Beckers, G. Rothenberg, Green Chem. 2004, 6,
215.
[30] D. Saha, T. Chatterjee, M. Mukherjee, B. C. Ranu, J. Org. Chem. 2012, 77,
9379.
[31] Z. L. Wang, L. Wang, P. H. Li, Synthesis 2008, 1367.
Acknowledgments
This work was supported by the 111 Project (B14041), National Nat-
ural Science Foundation of China (21171112, 21271124, 21371112),
Fundamental Doctoral Fund of Ministry of Education of China
Appl. Organometal. Chem. (2015)
Copyright © 2015 John Wiley & Sons, Ltd.
wileyonlinelibrary.com/journal/aoc