3986
S. D. Edmondson et al. / Bioorg. Med. Chem. Lett. 13 (2003) 3983–3987
The observed increase of plasma glycerol indicates an
increase of lipolysis leading to higher blood levels of
glycerol and free fatty acids. Since free fatty acids
undergo thermogenic oxidation in brown adipose tissue
(where PDE3B is localized), we next sought to measure
increases in metabolic rate after exposure to 8a. We thus
administered 8a orally to male rats in increasing doses (1,
3, and 10 mg/kg) and measured percentage increases in
thermogenesis compared to the predose metabolic rate.
The potent PDE3B inhibitor 8a showed a significant
increase in metabolic rate at 3.0 and 10.0 mg/kg (14 and
21%, respectively) over an 8-h period post dosing.
2. (a) Manganiello, V. C.; Taira, M.; Degerman, E.; Bel-
frage, P. Cell. Signal. 1995, 7, 445. (b) Alvarez, R.; Bane-
rjee, G. L.; Bruno, J. J.; Jones, G. H.; Littschwager, K.;
Strosberg, A. M.; Venuti, M. C. Mol. Pharmacol. 1986, 29,
554.
3. For a lead reference describing this compound, see: Jaski,
B. E.; Filer, M. A.; Wright, R. F.; Braunwald, E.; Colucci,
W. S. J. Clin. Invest. 1985, 75, 643.
4. Nishi, T.; Tabusa, F.; Tanaka, T.; Ueda, H.; Shimizu, T.;
Kanabe, T.; Kimura, Y.; Nakagawa, K. Chem. Pharm. Bull.
1983, 31, 852.
5. For a lead reference, see: Murray, K. J.; Eden, R. J.; Dolan,
J. S.; Grimsditch, D. C.; Stutchbury, C. A.; Patel, B.;
Knowles, A.; Worby, A.; Lynham, J. A.; Coates, W. J. Br. J.
Pharmacol. 1992, 107, 463.
In order to determine the effects of 8a on cardiovascular
activity, we administered this compound intravenously
to anesthetized rats in increasing doses (0.01 to 0.1 mg/
kg) and measured blood pressure over 60 min. A rapid
(earliest time point=5 min) and sustained (60 min=
duration of study) decrease in mean arterial pressure
was observed in response to 8a. The maximal decrease
in blood pressure was 40%, obtained at 0.1 mg/kg, 60
min post dosing and a 20% decrease was observed at
0.02 mg/kg. These cardiovascular effects are likely due
to the off target PDE3A inhibition, which is known to
induce vasodilation and is localized primarily in blood
vessels and heart. Nevertheless, it is also possible that
PDE3B inhibition could lead to the above effects.
6. Hirose, H.; Mashiko, S.; Kimura, T.; Ishida, F.; Mochi-
zuki, N.; Nishibe, T.; Nishikibe, M. J. Cardiovasc. Pharm.
2000, 35, 586.
7. (a) Maurice, D. H.; Liu, H. Br. J. Pharmacol. 1998, 125,
1501. (b) Degerman, E.; Belfrage, P.; Manganiello, V. C. J.
Biol. Chem. 1997, 272, 6823. (c) Reinhardt, R. R.; Chin, E.;
Zhou, J.; Taira, M.; Murata, T.; Manganiello, V. C.; Bondy,
C. A. J. Clin. Invest. 1995, 95, 1528. (d) Taira, M.; Hockman,
S. C.; Calvo, J. C.; Taira, M.; Belfrage, P.; Manganiello, V. C.
J. Biol. Chem. 1993, 268, 18573. (e) Meacci, E.; Taira, M.;
Moos, M.; Smith, C. J.; Movesian, M. A.; Degerman, E.;
Belfrage, P.; Manganiello, V. Proc. Natl. Acad. Sci. U.S.A.
1992, 89, 3721.
8. For a lead reference, see: (a) Snyder, P. B. Emerg. Ther.
Targets 1999, 3, 587. (b) Ekolm, D.; Hemmer, B.; Gao, G.;
Vergelli, M.; Martin, R.; Manganiello, V. C. J. Immunol. 1997,
20, 1529. (c) Murata, T.; Taira, M.; Manganiello, V. C. FEBS
Lett. 1996, 390, 29.
9. (a) Leroy, M.-J.; Degerman, E.; Taira, M.; Murata, T.;
Wang, L. H.; Movsesian, M. A.; Meacci, E.; Mangianello,
V. C. Biochemistry 1996, 35, 10194. (b) Snyder, P. B.; Beaton,
G.; Rueter, J. K.; Fanning, D. L.; Warren, S. D.; Hadidaruah,
S. S. W.O. Patent 070,469, 2002.
10. (a) Mertens, A.; Friebe, W.-G.; Muller-Beckmann, B.;
Kampe, W.; Kling, L.; von der Saal, W. J. Med. Chem. 1990,
33, 2870. (b) Coates, W. J.; Prain, H. D.; Reeves, M. L.;
Warrington, B. H. J. Med. Chem. 1990, 33, 1735. (c) Moos,
W. H.; Humblet, C. C.; Sircar, I.; Rithner, C.; Weishaar, R. E.;
Bristol, J. A.; McPhail, A. T. J. Med. Chem. 1987, 30, 1963.
(d) Sircar, I.; Weishaar, R. E.; Kobylarz, D.; Moos, W. H.;
Bristol, J. A. J. Med. Chem. 1987, 30, 1955.
In summary, a series of potent and subtype selective 2-
benzylvinylogous amide derived PDE3B inhibitors were
prepared and tested in vitro. Analysis of a series of
dihydropyridazinones led to the discovery of the most
potent PDE3B inhibitors yet reported (9a and 9b).
Investigations into a series of dimethylpyrazolones led
to the discovery of several potent PDE3B inhibitors that
are the most subtype selective compounds reported to
date (e.g., 18f, 3A/3B=33 and 18n, 3A/3B=23).
Benchmark compound 8a was then shown to stimulate
lipolysis in adipocytes with an ED50=0.6 mg/kg. Orally
administered 8a increased metabolic rate in the rat at 3
and 10 mg/kg. Finally, 8a showed a significant lowering
of blood pressure in the rat at doses as low as 0.01 mg/
kg. The results described above suggest that an orally
active, potent, and selective PDE3B inhibitor may be
therapeutically useful for the treatment of obesity.
Nevertheless, a compound substantially more selective
than 8a will be necessary to ultimately determine if
hypotension is an effect of PDE3B inhibition.
11. Owings, F. F.; Fox, M.; Kowalski, C. J.; Baine, N. H. J.
Org. Chem. 1991, 56, 1963.
12. Rajamannar, T.; Palani, N.; Balasubramanian, K. K. Syn.
Commun. 1993, 23, 3095.
13. Edmondson, S. D.; Mastracchio, A.; Parmee, E. R. Org.
Lett. 2000, 2, 1109.
14. The catalytic regions of PDE3B and PDE3A were expres-
sed as soluble proteins in Escherichia coli. The human PDE3B
gene fragment was inserted into a pET30a vector (Novagen)
such that an S-tag and a poly-histidine tag would be added to
the N-terminus of the protein starting at amino acid 387. The
human PDE3A gene fragment was inserted into a pET23a
vector such that a T7 tag would be added to the N-terminus of
PDE3A starting at amino acid 388. The proteins were expres-
sed in E. coli BL21 (DE3) pLysS following an IPTG induction.
The soluble protein extract from E. coli was precipitated by
ammonium sulfate (50% saturation) and resuspended in an
equivalent volume of buffer (20 mM Tris, pH 7.4, 75 mM
NaCl, 2 mM MgCl2, 1 mM DTT, 0.5 mM EDTA, 1:1000
poly-histidine tagged protein protease inhibitors (Sigma-
Aldrich), and 35% ethylene glycol). After an overnight dia-
lysis against the above buffer, the sample was purified over
DEAE Sepharose FF (40–70 mg protein/mL resin, Amersham
Acknowledgements
We thank Dr. Steven L. Colletti and Mr. Richard Ber-
ger for experimental procedures helpful for the conver-
sion of 10 to 11.
References and Notes
1. (a) Soderling, S. H.; Beavo, J. A. Curr. Opin. Cell Biol.
2000, 12, 174. (b) Beavo, J. A. Phsyiol. Rev. 1995, 75, 725. (c)
Weishaar, R. E.; Cain, M. H.; Bristol, J. A. J. Med. Chem.
1985, 28, 537.