J.-M. Lee et al. / Tetrahedron: Asymmetry 14 (2003) 3639–3641
3641
37, 2311; (g) Bunnage, M. E.; Davies, S. G.; Goodwin, C.
J. J. Chem. Soc., Perkin Trans. 1 1994, 2385.
7. Lee, J. M.; Lim, H. S.; Chung, S. K. Tetrahedron: Asym-
metry 2002, 13, 343.
8. (a) Chung, S. K.; Kang, K. H. Tetrahedron: Asymmetry
1997, 8, 3027; (b) Abiko, A.; Masamune, S. Tetrahedron
Lett. 1996, 37, 1077.
9. Compounds 3 and 4 were reduced by a variety of condi-
tions employing NaBH4, LiBH4, Zn(BH4)2, L-Selectride,
LiAlH4, NaBH3CN, and DIBAL to give syn/anti prod-
ucts in good chemical yields (68–99%) but moderate
diastereoselectivities (52–85% de).
10. (a) The paucity of examples of the direct preparation of
a-keto esters from enones via oxidative cleavages such as
ozonolysis in the literature may suggest that a further
detailed study of this reaction might be warranted; (b)
Marshall, J. A.; Garofalo, A. W. J. Org. Chem. 1993, 58,
3675.
11. It is also conceivable that the reduction of a-keto esters 5
and 6 takes place in the H-bonded cyclic structure
between the amino group and the ester group.
Scheme 2. Reagents and conditions: (i) BzCl, NaHCO3,
MeOH, 0°C; (ii) SOCl2, CH2Cl2, reflux; (iii) 1N HCl, MeOH,
reflux, followed by satd NaHCO3, 50°C.
spectroscopic and physical properties of 8a were satis-
factorily compared with the literature data.15
In summary, we have developed practical synthetic
routes to syn/anti b-amino-a-hydroxy carboxylates
from amino acids using highly efficient diastereoselec-
tive reduction of b-amino-a-keto ester derivatives 6 via
a chelation control. This method is expected to be
useful in preparing a variety of biologically important
compounds containing the syn/anti AHC moiety.
12. No racemization during the reduction was confirmed by
converting benzoylated anti-AHC compounds 9a–c to the
corresponding O-(−)-MTPA esters 9a%–9c%.17 1H and 19F
NMR data indicated their homogeneity. Compound 9a%:
1H NMR (CDCl3) l 3.62 (s, 3H), 3.69 (s, 3H), 5.80 (m,
2H), 6.42 (d, J=7.8 Hz, 1H), 7.26–7.60 (m, 15H), 19F
NMR (CDCl3) l 5.00. Compound 9b%: 1H NMR (CDCl3)
l 2.87 (m, 2H), 3.66 (s, 3H), 3.68 (d, J=1.1 Hz, 3H), 5.09
(m, 1H), 5.55 (d, J=3.6 Hz, 1H), 5.85 (d, J=8.5 Hz, 1H),
7.12–7.48 (m, 15H), 19F NMR (CDCl3) l 5.05. Com-
Acknowledgements
1
pound 9c%: H NMR (CDCl3) l 0.89 (d, J=6.4 Hz, 6H),
Financial support from the Ministry of Education/
BSRI Fund is gratefully acknowledged.
0.97 (m, 1H), 1.26 (m, 1H), 1.56 (m, 1H), 3.66 (d, J=1.1
Hz, 3H), 3.86 (s, 1H), 4.86 (m, 1H), 5.50 (d, J=1.9 Hz,
1H), 5.76 (d, J=3.4 Hz, 1H), 7.26–7.62 (m, 10H), 19F
NMR (CDCl3) l 4.92.
References
1. (a) Kingston, D. G. I.; Jagtap, P. G.; Yuan, H.; Samala,
L. In Progress in the Chemistry of Organic Natural Prod-
ucts; Herz, W., Falk, H.; Kirby, G. W., Eds.; Springer:
Wien, New York, 2002; Vol. 84; pp. 53–225; (b) Nico-
laou, K. C.; Dai, W. M.; Guy, R. K. Angew. Chem., Int.
Ed. Engl. 1994, 33, 15.
13. Compound 9a: [h]D20 −25.6 (c 0.68, CHCl3), mp 155–
157°C {lit.6d [h]D21 −23.7 (c 1.1, CHCl3), mp 158–159°C}.
To the best of our knowledge, compounds 9b and 9c were
not previously synthesized. Compound 9b: [h]2D0 −14.6 (c
0.56, CHCl3), mp 183–184°C. Compound 9c: [h]2D0 −9.8 (c
0.46, CHCl3), mp 141–142°C.
14. (a) Gou, D. M.; Liu, Y. C.; Chen, C. S. J. Org. Chem.
1993, 58, 1287; (b) Wuts, P. G. M.; Northuis, J. M.;
Kwan, T. A. J. Org. Chem. 2000, 65, 9223.
15. Compound 8a: [h]2D5 −48.6 (c 0.42, MeOH), mp 182–
183°C {lit.16 [h]2D0 −47.5 (c 0.99, MeOH), mp 180–181°C}.
To the best of our knowledge, compounds 8b and 8c were
not previously synthesized. 8b: [h]2D5 −89.5 (c 0.35,
CHCl3), mp 129–130°C. 8c: [h]2D5 −53.1 (c 0.40, CHCl3),
mp 122–123.5°C.
2. Umezawa, H.; Aoyagi, H.; Suda, H.; Hamada, M.;
Takeuchi, T. J. Antibiot. 1976, 29, 97.
3. Aoyagi, T.; Tobe, H.; Suda, H.; Kojima, F.; Hamada,
M.; Takeuchi, T. J. Antibiot. 1978, 31, 636.
4. Mimoto, T.; Imai, J.; Kisanuki, S.; Enomoto, H.; Hat-
tori, N.; Akaji, K.; Kiso, Y. Chem. Pharm. Bull. 1992, 40,
2251.
5. Umemura, E.; Tsuchiya, T.; Umezawa, S. J. Antibiot.
1988, 41, 530.
6. (a) Hamamoto, H.; Mamedov, V. A.; Kitamoto, M.;
Hayashi, N. O.; Tsuboi, S. Tetrahedron: Asymmetry 2000,
11, 4485; (b) Kayser, M. M.; Mihovilovic, M. D.; Kearns,
J.; Feicht, A.; Stewart, J. D. J. Org. Chem. 1999, 64,
6603; (c) Kang, S. H.; Kim, C. M.; Youn, J. H. Tetra-
hedron Lett. 1999, 40, 3581; (d) Jost, S.; Gimbert, Y.;
Greene, A. E. J. Org. Chem. 1997, 62, 6672; (e) Cardillo,
G.; Tomasini, C. Chem. Soc. Rev. 1996, 117; (f)
Ambroise, L.; Jackson, R. F. W. Tetrahedron Lett. 1996,
16. Hanessian, S.; Sanceau, J. Y. Can. J. Chem. 1996, 74,
621.
17. Sakaitani, M.; Ohfune, Y. J. Am. Chem. Soc. 1990, 112,
1150.