626
M. Ouattara et al. / Bioorg. Med. Chem. Lett. 19 (2009) 624–626
Compound 10 (ip)
Compound 10 (po)
Compound 12 (po)
Acknowledgments
100
80
60
40
20
0
These studies were supported by the European Commission
(Antimalintegrated projectLSHP-CT-2005-018834). We are grateful
to Marjorie Maynadier and Frederic Boudou for their assistance in
testing the compounds. We thank Aaron Gabriel (Harvard Medical
School, Cambridge, USA) for a critical reading of the manuscript.
Supplementary data
1H and 13C NMR, MS (FAB or ESI), FTIR data of new compounds
and biological protocol are given. Supplementary data associated
with this article can be found, in the online version, at
1
10
100
Dose (mg/kg)
Figure 2. In vivo antimalarial activity of compounds 10 (j, N) and 12 (s) against
P. vinckei-infected mice after ip (dashed line) or oral (straight line) treatment. Mice
were iv-infected with 107 parasites, leading to parasitemia of 0.5% on day 1.
Treatment consisted in one daily administration for four consecutives days (days 1–
4 post-infection). Parasitemia were checked on day 5 and expressed in % of control.
Results are the mean of three mice per dosage SEM. After ip administration,
compound 12 do not significantly affect parasitemia until 20 mg/kg.
References and notes
1. Greenwood, B. M.; Fidock, D. A.; Kyle, D. E.; Kappe, S. H.; Alonso, P. L.; Collins, F.
H.; Duffy, P. E. J. Clin. Invest. 2008, 118, 1266.
2. Vial, H.; Calas, M. In Antimalarial Chemotherapy, Mechanisms of Action, Modes of
Resistance, and New Directions in Drug Development; Rosenthal, P., Ed.; Humana
Press: Totowa, 2001; pp 347–365.
3. Salom-Roig, X. J.; Hamze, A.; Calas, M.; Vial, H. J. Comb. Chem. High Throughput
Screening 2005, 8, 49.
4. Calas, M.; Cordina, G.; Bompart, J.; Bari, M. B.; Jei, T.; Ancelin, M. L.; Vial, H. J.
Med. Chem. 1997, 40, 3557.
5. Calas, M.; Ancelin, M. L.; Cordina, G.; Portefaix, P.; Piquet, G.; Vidal-Sailhan, V.;
Vial, H. J. Med. Chem. 2000, 43, 505.
6. Ancelin, M. L.; Calas, M.; Bompart, J.; Cordina, G.; Martin, D.; Ben Bari, M.; Jei,
T.; Druilhe, P.; Vial, H. J. Blood 1998, 91, 1426.
7. Ancelin, M. L.; Calas, M.; Bonhoure, A.; Herbute, S.; Vial, H. J. Antimicrob. Agents
Chemother. 2003, 47, 2598.
8. Ancelin, M. L.; Calas, M.; Vidal-Sailhan, V.; Herbute, S.; Ringwald, P.; Vial, H. J.
Antimicrob. Agents Chemother. 2003, 47, 2590.
9. Wengelnik, K.; Vidal, V.; Ancelin, M. L.; Cathiard, A. M.; Morgat, J. L.; Kocken, C.
H.; Calas, M.; Herrera, S.; Thomas, A. W.; Vial, H. J. Science 2002, 295, 1311.
10. Vial, H. J.; Wein, S.; Farenc, C.; Kocken, C.; Nicolas, O.; Ancelin, M. L.; Bressolle,
F.; Thomas, A.; Calas, M. Proc. Natl. Acad. Sci. U.S.A. 2004, 101, 15458.
11. Hamze, A.; Rubi, E.; Arnal, P.; Boisbrun, M.; Carcel, C.; Salom-Roig, X.;
Maynadier, M.; Wein, S.; Vial, H.; Calas, M. J. Med. Chem. 2005, 48, 3639.
12. Calas, M.; Ouattara, M.; Piquet, G.; Ziora, Z.; Bordat, Y.; Ancelin, M. L.; Escale, R.;
Vial, H. J. Med. Chem. 2007, 50, 6307.
13. Vial, H.; Calas, M.; Ancelin, M. L.; Escale, R.; Vidal, V.; Bressolle, F. WO Patent
WO 04/009068, 2004.
14. Clement, B.; Raether, W. Arzneim.-Forsch. 1985, 35, 1009.
15. Clement, B.; Immel, M.; Terlinden, R.; Wingen, F. J.; Raether, W. Arch. Pharm.
1992, 325, 61.
16. Weller, T.; Alig, L.; Beresini, M.; Blackburn, B.; Bunting, S.; Hadvary, P.; Muller,
M. H.; Knopp, D.; Levet-Trafit, B.; Lipari, M. T.; Modi, N. B.; Muller, M.; Refino, C.
J.; Schmitt, M.; Schonholzer, P.; Weiss, S.; Steiner, B. J. Med. Chem. 1996, 39,
3139.
17. Clement, B.; Lopian, K. Drug Metab. Dispos. 2003, 31, 645.
18. Boykin, D. W.; Kumar, A.; Hall, J. E.; Bender, B. C.; Tidwell, R. R. Bioorg. Med.
Chem. Lett. 1996, 6, 3017.
were limited by the weak solubility of the compounds. The appli-
cation of the validated prodrug strategies including acetylated
amidoxime30 and oxadiazole,23 did not lead to any in vivo antima-
larial activity. On the other hand, molecules 1 and 8–12 revealed
significant activities against P. vinckei after oral administration. Gi-
ven orally, 120 mg of the bis-alkylamidoxime 1, and 180 mg of the
bis-O-methylamidoxime 9 reduced parasitemia to 50% compared
to control. These compounds appeared more efficient by oral
administration at 90 mg/kg than the parent drug M34, which pos-
sessed no significant effects at that concentration. According to
these results, the prodrug strategies using the simple amidoxime
(1) or the O-methylamidoxime (9), that were validated for ben-
zamidine drugs (melagatran17 and furamidine18), appear less effec-
tive at improving the oral bioavailability of C-alkylamidine M34.
The specific enzymes may not recognize alkylamidoxime struc-
tures whereas benzamidoxime prodrugs of melagatran and of
furamidine are recognized. No data are yet available on biotrans-
formations of alkylamidoximes. Oral administration of 120 mg/kg
of the thiadiazolone derivative 11 and of bis-O-ethyl-car-
bamoylamidoxime 8 led to, respectively, 25% and 80% decreases
of parasitemia as compared to control. Contrary to the previous
compounds, the two derivatives, methylsulfonate 10 and oxa-
diazolone 12, were successful, since a total clearance of parasite-
mia was obtained with 120 mg/kg of both compounds (Fig. 2).
Since the oxadiazolone 12 possesses weak in vitro activity, it is
likely that the significant oral antimalarial activity of oxadiazolone
12 is linked to its in vivo conversion into M34. The results obtained
with antithrombotic agents and M64 confirm this hypothesis.22,23
Remarkably, the methylsulfonyle substituent greatly increased
in vivo antimalarial activity. The bis-O-methylsulfonyle compound
10 displays the most potent oral antiplasmodial activity (ED50
po = 40 mg/kg) of all tested compounds, totally inhibiting P. vinckei
growth in infected mice.
19. Clement, B. Drug Metab. Rev. 2002, 34, 565.
20. Gustafsson, D.; Nystrom, J.-E.; Carlsson, S.; Bredberg, U.; Eriksson, U.;
Gyzander, E.; Elg, M.; Antonsson, T.; Hoffmann, K.-J.; Ungell, A.-L.; Sorensen,
H.; Nagard, S.; Abrahamsson, A.; Bylund, R. Thromb. Res. 2001, 101, 171.
21. Yoshida, W. B.; El Dib, R. P.; Yoshida Rde, A.; Maffei, F. H. Sao Paulo Med. J. 2006,
124, 355.
22. Ouattara, M.; Wein, S.; Calas, M.; Hoang, Y. V.; Vial, H.; Escale, R. Bioorg. Med.
Chem. Lett. 2007, 17, 593.
23. Kitamura, S.; Fukushi, I.; Miyawaki, T.; Kawamura, M.; Terashita, E.; Naka, T.
Chem. Pharm. Bull. 2001, 49, 268.
24. Eloy, F.; Lenaers, R. Chem. Rev. 1962, 62, 155.
25. Venkatesh, C. G.; Srivastava, R. M.; Brinn, I. M. J. Chem. Soc., Perkin Trans. 2 1979,
873.
In conclusion, we were challenged to develop prodrugs of M34
that displayed oral antimalarial activity, since this drug exhibited
no in vivo antimalarial activity. Strategies developed for benzami-
dines do not apply to alkylamidine drugs and specific O-substitu-
ents are necessary to obtain molecules with relevant oral
antimalarial activity. In C-alkylamidine series, the oxadiazolone
12 and the O-methylsulfonate 10 exhibited potent antimalarial
activities when given orally. These prodrug candidates may be effi-
ciently converted into active drug. They induce the fall of parasite-
mia within two log of concentration and the complete clearance of
the blood parasite after one daily dose for 4 days.
26. NMR and FTIR were in full accord with the assigned structure. For example,
1,12-bis-(N,N0-methylsulfonyloxy amidinyl)-dodecane 10: mp 107–108 °C
(CHCl3); 1H (DMSO-d6, 300 MHz) d: 1.23 (s, 16H); 1.51 (m, 4H); 2.03 (t, 4H);
3.06 (s, 6H); 6.59 (s, 4H). 13C (DMSO-d6, 75 MHz) d: 26.4; 28.3; 28.6; 28.9; 29.0;
30.0; 35.6; 160.5. FTIR cmꢁ1: 1166; 1332; 1619; 3373; and 3497. ES+ SM: 443
[M+H+]; 222 [(M+2H+)/2]; 885 [2M+H+].
27. Bell, C. L.; Nambury, C. N. V.; Bauer, L. J. Org. Chem. 1964, 29, 2873.
28. Desjardins, R. E.; Canfield, C. J.; Haynes, J. D.; Chulay, J. D. Antimicrob. Agents
Chemother. 1979, 16, 710.
29. Barkan, D.; Ginsburg, H.; Golenser, J. Int. J. Parasitol. 2000, 30, 649.
30. Clement, B.; Burenheide, A.; Rieckert, W.; Schwarz, J.; Immel, M.; Schmitt, S.;
Steinmann, U.; Terlinden, R.; Wingen, F. J.; Raether, W. ChemMedChem 2006, 1,
1260.