π-interaction may attribute to the formation of Mn-V. Meanwhile,
the reduction of styrene 1a by HMn(CO)5 delivers the byproduct,
ethylbenzene 5a.
Acknowledgement (optional)
Financial support from the National Natural Science
Foundation of China (21472194, 21772202, 21521002) are
gratefully acknowledged.
Scheme 5 Mechanistic studies on dehydrogenative silylation, isolated
yields were shown
References
[1] (a) Comprehensive handbook on hydrosilylation, Ed.: B. Marciniec,
Pergamon, Oxford, 1992; (b) Hydrosilylation:
A comprehensive
review on recent advances, Ed.: B. Marciniec, Springer, Berlin, 2009.
[2] For selected reviews, see: (a) Troegel, D.; Stohrer, J. Coord. Chem.
Rev. 2011, 255, 1440; (b) Sun, J.; Deng, L. ACS Catal. 2016, 6, 290; (c)
X. Du, Z. Huang, ACS Catal. 2017, 7, 1227-1243; For selected recent
examples, see, Fe: (d) Tondreau, A. M.; Atienza, C. C.; Weller, K. J.;
Nye, S. A.; Lewis, K. M.; Delis, J. G.; Chirik, P. J. Science 2012, 335,
567; (e) Chen, J.; Cheng, B.; Cao, M.; Lu, Z. Angew. Chem. Int. Ed.
2015, 54, 4661; Angew. Chem. 2015, 127, 4744; (f) Jia, X.; Huang, Z.
Nat. Chem. 2016, 8, 157; (g) Hu, M.-Y.; He, Q.;. Fan, S.-J; Wang, Z.-C.;
Liu, L-Y.; Mu, Y.-J.; Peng, Q.; Zhu, S.-F. Nat. Commun. 2018, 9, 221;
(h) Cheng, B.; Liu, W.; Lu, Z. J. Am. Chem. Soc. 2018, 140, 5014; Co: (i)
Atienza, C. C.; Diao, T.; Weller, K. J.; Nye, S. A.; Lewis, K. M.; Delis, J.
G.; Boyer, J. L.; Roy, A. K.; Chirik, P. J. J. Am. Chem. Soc. 2014, 136,
12108; (j) Chen, C.; Hecht, M. B.; Kavara, A.; Brennessel, W. W.;
Mercado, B. Q.; Weix, D. J.; Holland, P. L.; J. Am. Chem. Soc. 2015,
137, 13244; (k) Wang, C.; Teo, W. J.; Ge, S. ACS Catal. 2016, 7, 855; (l)
Liu, Y.; Deng, L. J. Am. Chem. Soc. 2017, 139, 1798; (m) Cheng, B.; Lu,
P.; Zhang, H.; Cheng, X.; Lu, Z. J. Am. Chem. Soc. 2017, 139, 9439; (n)
Raya, B.; Jing, S.; RajanBabu T. V., ACS Catal. 2017, 7, 2275; (o) Sang,
H. L.; Yu, S.; Ge, S. Chem. Sci. 2018, 9, 973; Ni: (p) Buslov, I.; Becouse,
J.; Mazza, S.; Montandon-Clerc, M.; Hu, X. Angew. Chem. Int. Ed.
2015, 54, 14523; Angew. Chem. 2015, 127, 14731; (q) Buslov, I.;
Keller, S. C.; Hu, X. Org. Lett. 2016, 18, 1928; Cu: (r) Gribble, M. W.;
Pirnot, Jr., M. T.; Bandar, J. S.; Liu, R. Y.; Buchwald, S. L.; J. Am. Chem.
Soc. 2017, 139, 2192; Rh: (s) Azpeitia, S.; Garralda, M. A.; Huertos M.
A., ChemCatChem 2017, 9, 1901; Ir: (t) Srinivas, V.; Nakajima, Y.;
Sato, K.; Shimada, S. Org. Lett. 2018, 20, 12; Sm: (u) Liu, J.; Chen, W.;
Li, J.; Cui, C. ACS Catal. 2018, 8, 2230; Pt: (v) Pan, Z.; Liu, M.; Zheng,
C.; Gao, D.; Huang, W. Chin. J. Chem., 2017, 35, 1227-1230; (w) Xiao,
J.; Qiu, Z.; He, W.; Du, C.; Zhou, W. Chin. J. Org. Chem. 2016, 36,
987-999; Pd: (x) Zhang, F.; Liu, X.; Liu, W.; Deng, G. Chin. J. Org.
Chem. 2017, 37, 2555-2568.
Conclusions
In summary, a general manganese-catalyzed hydrosilylation
and the first manganese-catalyzed dehydrogenative silylation of
olefins are developed by using mononuclear Mn(CO)5Br and
dinuclear Mn2(CO)10 respectively. Mechanically, a HAT pathway
from key β-silyl-alkyl radical intermediates was deemed operative
for the hydrosilylation, while an organometallic β-H elimination
pathway might account for the dehydrogenative silylation
reaction.[12] Further explorations on Mn-catalysis based on radical
and/or organometallic processes are underway in our laboratory.
Experimental
In an oven-dried Schlenk tube, a mixture of the alkene (0.5
mmol), the silane (1 mmol), Mn(CO)5Br (0.025 mmol, 5 mol%) and
hexane (2.5 mL) was stirred at 60 °C for 4 h under N2 atmosphere.
After completion of the reaction, the mixture was cooled down to
room temperature. The solvent was removed under reduced
pressure and the hydrosilylation product was isolated by column
chromatography on silica gel with EtOAc/PE.
Similarly, in an oven-dried Schlenk tube, a mixture of the
alkene (1.5 mmol), the silane (0.5 mmol), Mn2(CO)10 (0.05 mmol,
10 mol%) and hexane (2.5 mL) was stirred at 150 °C for 12 h
under N2 atmosphere. After completion of the reaction, the
mixture was cooled down to room temperature. The solvent was
removed under reduced pressure and the dehydrogenative
silylation product was isolated by column chromatography on
silica gel with EtOAc/PE.
[3] For selected reviews, see: (a) Carney, J. R.; Dillon, B. R.; Thomas, S. P.
Eur. J. Org. Chem. 2016, 2016, 3912; (b) Trovitch, R. J. Acc. Chem. Res.
2017, 50, 2842; (c) Yang, X.; Wang, C. Chem. Asian J. 2018,
10.1002/asia.201800618; For selected examples, see: (d) Hanna, P.
K.; Gregg, B. T.; Cutler, A. R.; Organometallics 1991, 10, 31; (e) Mao,
Z.; Gregg, B. T.; Cutler, A. R. J. Am. Chem. Soc. 1995, 117, 10139; (f)
DiBiase Cavanaugh, M.; Gregg, B. T.; Cutler, A. R. Organometallics
1996, 15, 2764; (g) Son, S. U.; Paik, S.-J.; Lee, I. S.; Lee, Y.-A.; Chung, Y.
K.; Seok, W. K.; Lee, H. N. Organometallics 1999, 18, 4114; (h)
Chidara, V. K.; Du, G. Organometallics 2013, 32, 5034; (i) Zheng, J.;
Chevance, S.; Darcel, C.; Sortais, J.-B. Chem. Commun. 2013, 49,
10010; (j) Mukhopadhyay, T. K.; Flores, M.; Groy, T. L.; Trovitch, R. J.;
J. Am. Chem. Soc. 2014, 136, 882; (k) Kelly, C. M.; McDonald, R.;
Sydora, O. L.; Stradiotto, M.; Turculet, L. Angew. Chem. Int. Ed. 2017,
56, 15901; Angew. Chem. 2017, 129, 16117; (l) Ma, X.; Zuo, Z.; Liu,
G.; Huang, Z. ACS Omega 2017, 2, 4688; (m) Mukhopadhyay, T. K.;
Rock, C. L.; Hong, M.; Ashley, D. C.; Groy, T. L.; Baik, M. H.; Trovitch, R.
J. J. Am. Chem. Soc. 2017, 139, 4901.
Supporting Information
The supporting information for this article is available on the
This article is protected by copyright. All rights reserved.