Organic Letters
Letter
Scheme 3. One-Step Synthesis of (−)-Δ8-Br-THC and
Subsequent Suzuki−Miyaura Cross-Coupling Provides
(−)-Δ8-THC Derivatives with Different Side Chains
REFERENCES
■
(1) Gaoni, Y.; Mechoulam, R. J. Am. Chem. Soc. 1964, 86, 1646−1647.
(2) Mechoulam, R.; Hanus, L. O.; Pertwee, R.; Howlett, A. C. Nat. Rev.
Neurosci. 2014, 15, 757−764.
(3) Devane, W. A.; Dysarz, F. A.; Johnson, M. R.; Melvin, L. S.;
Howlett, A. C. Mol. Pharmacol. 1988, 34, 605−613.
(4) Munro, S.; Thomas, K. L.; Abu-Shaar, M. Nature 1993, 365, 61−65.
(5) Svízenska,
2008, 90, 501−511.
́
́ ́
I.; Dubovy, P.; Sulcova, A. Pharmacol., Biochem. Behav.
(6) Galiegue, S.; Mary, S.; Marchand, J.; Dussossoy, D.; Carriere, D.;
Carayon, P.; Bouaboula, M.; Shire, D.; Le Fur, G.; Casellas, P. Eur. J.
Biochem. 1995, 232, 54−61.
(7) Mallipeddi, S.; Janero, D. S.; Zvonok, N.; Makriyannis, A. Biochem.
Pharmacol. 2017, 128, 1−11.
(8) Russo, E. B. Ther. Clin. Risk Manage. 2008, 4, 245−259.
(9) Papahatjis, D. P.; Nahmias, V. R.; Andreou, T.; Fan, P.;
Makriyannis, A. Bioorg. Med. Chem. Lett. 2006, 16, 1616−1620.
(10) Muhammad, I.; Li, X.-C.; Dunbar, D. C.; Elsohly, E.; Khan, I. A. J.
Nat. Prod. 2001, 64, 1322−1325.
(11) Muhammad, I.; Li, X.-C.; Jacob, M. R.; Tekwani, B. L.; Dunbar, D.
C.; Ferreira, D. J. Nat. Prod. 2003, 66, 804−809.
(12) (a) Trost, B. M.; Dogra, K. Org. Lett. 2007, 9, 861−863.
(b) Cheng, L.-J.; Xie, J.-H.; Chen, Y.; Wang, L.-X.; Zhou, Q.-L. Org. Lett.
styryl chain of machaeriol A (for 5c), the bulky and highly active
naphthyl group9 (for 5b), and a para-anisyl substituent (for 5a).
In summary, we reinvestigated the Friedel−Crafts alkylation
and subsequent cyclization of (S)-cis-verbenol and olivetol and
obtained in one step (−)-Δ8-THC in 54% isolated yield from
commercially available starting materials. Using a resorcinol
derivative bearing a benzofuryl side chain in place of olivetol, the
same cascade was successfully applied to construct the
hexahydrodibenzopyran core of (−)-machaeriol B and D. Highly
diastereoselective hydroboration with thexylborane followed by
either oxidative or reductive workup directly delivers (−)-ma-
chaeriol B and D in 42% and 43% overall yields over five steps. To
the best of our knowledge, this represents the highest yield
reported thus far for the preparation of machaeriol D, and
protecting groups are not required. Furthermore, we successfully
synthesized in one step (−)-Δ8-Br-THC 4 as a common
intermediate to access three (−)-Δ8-THC derivatives bearing
different side chains via late-stage diversification by Suzuki−
Miyaura cross-coupling in a straightforward manner.
2013, 15, 764−767. (c) Glaser, F.; Brohmer, M. C.; Hurrle, T.; Nieger,
̈
̈
M.; Brase, S. Eur. J. Org. Chem. 2015, 2015, 1516−1524. (d) Schafroth,
̈
M. A.; Zuccarello, G.; Krautwald, S.; Sarlah, D.; Carreira, E. M. Angew.
Chem., Int. Ed. 2014, 53, 13898−13901. (e) Shultz, Z. P.; Lawrence, G.
A.; Jacobson, J. M.; Cruz, E. J.; Leahy, J. W. Org. Lett. 2018, 20, 381−384.
(f) Lee, H. J.; Lee, Y. R.; Kim, S. H. Helv. Chim. Acta 2009, 92, 1404−
1412. (g) Wang, Q.; Huang, Q.; Chen, B.; Lu, J.; Wang, H.; She, X.; Pan,
X. Angew. Chem., Int. Ed. 2006, 45, 3651−5653.
(13) (a) Dethe, D. H.; Erande, R. D.; Mahapatra, S.; Das, S.; Kumar, V.
B. Chem. Commun. 2015, 51, 2871−2873. (b) Razdan, R. K.; Dalzell, H.
C.; Handrick, G. R. J. Am. Chem. Soc. 1974, 96, 5860−5865. (c) Petrzilka,
T.; Haefliger, W.; Sikemeier, C.; Ohloff, G.; Eschenmoser, A. Helv. Chim.
Acta 1967, 50, 719−723. (d) Mechoulam, R.; Braun, P.; Gaoni, Y. J. Am.
Chem. Soc. 1967, 89, 4552−4554. (e) Razdan, G. R.; Handrick, G. R. J.
Am. Chem. Soc. 1970, 92, 6061−6062. (f) Razdan, R. K.; Handrick, G. R.;
Dalzell, H. C. Experientia 1975, 31, 16−17.
(14) Klotter, F.; Studer, A. Angew. Chem., Int. Ed. 2015, 54, 8547−
8550.
(15) Huffman, J. W.; Banner, W. K.; Zoorob, G. K.; Joyner, H. H.;
Reggio, P. H.; Martin, B. R.; Compton, D. R. Tetrahedron 1995, 51,
1017−1032.
(16) Villa, G.; Povie, G.; Renaud, P. J. Am. Chem. Soc. 2011, 133, 5913−
5920.
ASSOCIATED CONTENT
■
S
* Supporting Information
(17) Hua, T.; Vemuri, K.; Nikas, S. P.; Laprairie, R. B.; Wu, Y.; Qu, L.;
Pu, M.; Korde, A.; Jiang, A.; HO, J.-H.; Han, G. W.; Ding, K.; Li, X.; Liu,
H.; Hanson, M. A.; Zhao, S.; Bohn, L. M.; Makriyannis, A.; Stevens, R.
C.; Liu, Z.-J. Nature 2017, 547, 468−471.
(18) Westphal, M. V.; Schafroth, M. A.; Sarott, R. C.; Imhof, M. A.;
Bold, C. P.; Leippe, P.; Dhopeshwarkar, A.; Grandner, J. M.; Katritch, V.;
Mackie, K.; Trauner, D.; Carreira, E. M.; Frank, J. A. J. Am. Chem. Soc.
2017, 139, 18206−18212.
(19) We found by GC-MS that small amounts of the double alkylation
product of 1-bromo-3,5-dihydroxybenzene were formed in the crude
product (ratio single/double alkylation = 4:1; as determined by GC-
FID).
The Supporting Information is available free of charge on the
1
Experimental procedures, characterization data, and H
AUTHOR INFORMATION
■
Corresponding Author
ORCID
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
We thank Dr. Felix Klotter (University of Munster) for
conducting some experiments on the optimization study and
■
̈
Maren Wissing (University of Munster) for helpful discussions.
̈
This work was financially supported by the Deutsche
Forschungsgemeinschaft (DFG).
C
Org. Lett. XXXX, XXX, XXX−XXX